NASA Conference Publication 3356

% / Fourth NASA Langley Formal Methods
Workshop

Compiled by
C. Michael Holloway and Kelly]. Hayhurst

Proceedings of a workshop sponsored by

the National Aeronautics and Space Administration,
Washington, D.C., and held at the Radisson Hotel,
Hampton, Virginia

September 10-12, 1997

. ___|
September 1997

NASA Conference Publication 3356

% / Fourth NASA Langley Formal Methods
Workshop
Compiled by

C. Michael Holloway and Kelly]. Hayhurst
Langley Research Center ® Hampton, Virginia

Proceedings of a workshop sponsored by

the National Aeronautics and Space Administration,
Washington, D.C., and held at the Radisson Hotel,
Hampton, Virginia

September 10-12, 1997

L.
September 1997

This publication is available from the following sources:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road

Linthicum Heights, MD 21090-2934 Sprirgfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

General Chairman’s Message

On behalf of the Langley Formal Methods Team, I welcome you to Lfm97, the Fourth
NASA Langley Formal Methods Workshop. The primary purpose of our workshops has always
been to bring together leading formal methods researchers and practicing engineers in an
environment in which each group can learn from the other. The three previous workshops were
limited to invited presentations, but we expanded this year’s workshop to include 17 submitted
papers. We believe that the program has something to offer to everyone, from those interested in
the theoretical aspects of formal methods to those interested in the practical application of
formal methods to help solve real problems. I hope that you will agree, and that you will find
your time at Lfm97 both interesting and useful.

Many of the slide presentations that will be given at the workshop will be available on the
World-Wide Web at <http://atb-www.larc.nasa.gov/Lfm97/>. Information on the NASA
Langley formal methods program is also available on the web at <http://atb-
www.larc.nasa.gov/fm.html>.

I look forward to meeting you during the workshop. Please let me know if there is
anything that I can do to help you while you are here.

C. Michael Holloway, Lfm97 General Chairman
E-mail: c.m.holloway @larc.nasa.gov
Postal Address: Mail Stop 130, NASA Langley Research Center, Hampton VA 23681-0001

iii

% 70rganization

Workshop General Chairman
Michael Holloway, NASA Langley Research Center

Program Committee

Ricky Butler, NASA Langley Research Center (chairman)
Jim Caldwell, NASA Langley Research Center

Victor Carrefio, NASA Langley Research Center

Ben DiVito, VIGYAN

David Guaspari, Odyssey Research Associates

Kelly Hayhurst, NASA Langley Research Center

Michael Holloway, NASA Langley Research Center (acting chairman)
Damir Jamsek, Odyssey Research Associates

Pat Lincoln, SRI International,

Paul Miner, NASA Langley Research Center

John Rushby, SRI International

Organizing Committee

Kelly Hayhurst, NASA Langley Research Center
Michael Holloway, NASA Langley Research Center
Lisa Peckham, NASA Langley Research Center
Pamela Verniel, NASA Langley Research Center

Sponsoring Organization
Assessment Technology Branch,

Flight Electronics Technology Division,
Research & Technology Group,

NASA Langley Research Center,
Hampton, Virginia, U.S.A.

Table of Contents

General Chairman's MESSAGE...............ccuueeoieieriieceireecieeeeeeteeteeeteeesesssesssesiesseseesssssssssessessesesessenssens iii

LEM97 OrGamiZAatioNcccooiiiiiierieieeeteeee et et eeae e et et este s e e saeessassesstesaessasasseresssansesnenssssasses v

Why Are Formal Methods Not Used More Widely?..............ccocvvvmioemeeicieieeeeeeeeeeeeeeee v 1
John Knight, Colleen DeJong, Matthew Gibble, and Luis Nakano

Plotting The Escape from The Tower: A Formalist's Practicality Primercccccccceue.n..... 13
James Sutton

Proving Properties of ACCIAENLS...................ooeeiiiiiirieeieeeeeeee et seeeereteseeeeeesnsessesasessessasssnennens 21

C. W. Johnson

Formalization and Analysis of the Separation Minima for Aircraft in the North Atlantic Region 35
Nancy Day, Jeffrey Joyce, and Gerry Pelletier

Modeling and Validating SAFER in VDM-SLottt aesee s 51
Sten Agerholm and Peter Gorm Larsen

Requirements Analysis of Real-Time Control Systems Using PVSc.cccoiieviniineeeenne. 65
Bruno Dutertre and Victoria Stavridou

Reuse of a Formal Model for Requirements Validation......................cccooeiiveeieeeniiniiniecreeeee. 75
Robyn Lutz

Applying the SCR Requirements Method to a Simple Autopilotcccooevreviiininninnieneninne 87
Ramesh Bharadwaj and Constance Heitmeyer

A Tabular Language for System Designcc.cccooiiriniiiiiniiiertereereeeeee e ettt eseenas 103
Steven Johnson

Verifying Communication Related Safety Constraints in RSML Specifications 115
Mats P.E. Heimdahl

Towards High-Assurance High-Performance Program Synthesisccccocoviiiivnnnnnnncnene. 129
Michael Lowry, Steven Roach, and Jeffrey Van Baalen

On the Automatic Discovery of Loop Invariants.................cccocceieiioieeeenininieeceeceeesteeeeseeeseeseeenas 137
Andrew Ireland and Jamie Stark

PV: A Model-Checker for Verifying LTL-X Properties..............ccccccoeierinenenieercneeseneenenreeeeeaeenns 153
Ratan Nalumasu and Ganesh Gopalakrishnan

Automated Deductive Verification of Parallel Systems..............c..ccooueeeiiiniiiniieiniencineeceeeeernne 163
Hassen Saidi

Robust Computer System Proofs in PVSttt 177
Matthew Wilding

Domain Checking Z SpecifiCatiOnScccooiiiiiiiiiiiiiieccceee ettt ettt esseesenees 185
Mark Saaltink

Fundamental Hardware Design in PVS ... eresee e e e e eees 193

James Leathrum, Jr.

vii

Why Are Formal Methods Not Used More Widely?

John C. Knight Colleen L. DeJong Matthew S. Gibble Luis G. Nakano

(knight | c1d9h | msg7y | nakano) @virginia.edu
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

Abstract

Despite extensive development over many years and
significant demonstrated benefits, formal methods
remain poorly accepted by industrial practitioners.
Many reasons have been suggested for this situation
such as a claim that they extent the development cycle,
that they require difficult mathematics, that inadequate
tools exist, and that they are incompatible with other
software packages. There is little empirical evidence
that any of these reasons is valid. The research presented
here addresses the question of why formal methods are
not used more widely. The approach used was to
develop a formal specification for a safety-critical appli-
cation using several specification notations and assess
the results in a comprehensive evaluation framework.
The results of the experiment suggests that there remain
many impediments to the routine use of formal methods.

1 Introduction

For many years, academics have claimed that the use of
formal methods in software development would help
industry meet its goals of generating a better software
process and increasing software quality. The benefits
that have been cited include finding defects earlier, auto-
mating checking of certain properties, and decreasing
rework. Despite their popularity in academia and these
claimed benefits, formal methods are still not widely
used by commercial software companies. Industrial
authors have expressed frustration in trying to incorpo-
rate formal technologies into practical software develop-
ment for many reasons including: the perception that
they add lengthy stages to the process; they require
extensive personnel training; or they are incompatible
with other software packages. Experts in formal meth-
ods have tried to analyse the situation and provide sys-
tematic insight into the reasons for this lack of
acceptance [4, 7, 9].

The goals of the research presented here are to
investigate this disparity between research and industry,
and to determine what steps might be taken to increase

the benefits realized by industry from formal methods.
The initial hypothesis for the relative lack of use of for-
mal methods was that industrial practitioners were
reluctant to change their current methods and hence they
overlooked the benefits that formal methods could pro-
vide. However, upon attempting to apply several formal
techniques to a significant application in a case study,
several shortcomings that are actually well-known
impeded progress dramatically right at the outset.
Examples of the difficulties encountered were that a sin-
gle specification language could describe only a rela-
tively small part of the system, and necessary tools were
either not available, not compatible with other develop-
ment tools, or too slow.

A new hypothesis was formulated in response to
these findings. This second hypothesis was that formal
methods must overcome a number of relatively mun-
dane but important practical hurdles before their bene-
fits can be realized. These practical hurdles arise from
the current state of software-development practice.
While the methods used in industry are rarely formally
based, they are reasonably well-developed and under-
stood. In order to be incorporated into industrial prac-
tice, formal methods must meet this current standard.

After formulating this second hypothesis, we set
out to characterize these practical hurdles. A variety of
evaluations have appeared in the literature written
largely by researchers and with conclusions that tend to
praise formal methods. However, further investigation
of the evaluations found them lacking. The criteria used
for evaluation tended to be vague and ambiguous. They
were often derived from the author’s experience with a
particular project, with little substantiation that the list
of criteria was in any sense complete or even applicable
to a range of projects. In addition to defects in the crite-
ria themselves, the methods of evaluation were subjec-
tive. All of this resulted in little insight into the general
characteristics or utility of the formal method.

In this paper we summarize an evaluation frame-
work for formal methods and present results of applying
the framework to several formal techniques. The com-
plete framework provides a comprehensive list of evalu-

ation criteria together with the rationale for each. The
basis of the evaluation framework is the need for any
software technology, including formal methods, to con-
tribute to one overriding goal—the cost-effective devel-
opment of high-quality software. The results come from
the development of formal specifications in several
notations for a safety-critical application together with
the application of a theorem-proving system to the
application.

In the next section we summarize previous work
both in the use of formal methods in software develop-
ment and their evaluation. Then we present a summary
of our evaluation framework, and we follow that with a
summary of the results of its application in a case
studyl. Finally, we present our conclusions.

2 Previous Work

2.1 Formal Specification

Formal methods have made some inroads into industrial
practice. A fairly large number of projects have been
undertaken using formal specification in notations such
as Z, VDM, PVS, and Statecharts. The most comprehen-
sive report on such work is the well-known study by
Craigen, Gerhart, and Ralston [2].

iLogix gives summaries of some of the industrial
applications in which the Statemate family of tools has
been used [12]. Cardiac Pacemakers, Inc., a unit of
Guidant Corp., used Statemate to speed up development
of defibrillators and pacemakers. Animations of the
Statechart models allowed them to examine interactions
between features before building a prototype and to
receive feedback on the design from physicians. AOA
Apparatebau used Statemate to design a new waste sys-
tem for the Airbus A330 aircraft. Animation of the sys-
tem allowed them to easily test single and multiple
failures. Boeing used Statecharts in the development
and validation of electrical, mechanical, and avionics
systems as well as in their integration [14].

The Hursley Park laboratory of IBM UK has used Z
in two major projects involving CICS [11]. The first of
these was the development of a new release of the sys-
tem and this release showed quality improvements cor-
responding to the sections which were formally
specified. The second project was the formal specifica-
tion of the application programming interface.

SCR is a formal method developed at the Naval
Research Laboratory during an effort to re-engineer the
flight control software for the A-7 aircraft [8]. Since its

1. A complete report of the research can be found
elsewhere [3, 6].

introduction, the SCR methodology has been expanded
and more formally defined. It has been used on several
industrial projects, such as a submarine communications
system [10] and the certification of the shutdown system
for a nuclear generating station [2], but never without
the involvement of research or academic experts.

2.2 Formal Verification

Some industrial applications of formal verification have
been reported using tools such as HOL, Nqthm, EVES,
and PVS. Despite the large number of research projects
that have used formal methods, the number of industrial
projects that have utilized formal verification is quite
small. Of the industrial projects that have taken place,
the majority are research projects as opposed to actual
practice producing real products.

By far the largest application of formal verification
has been in hardware verification. Although hardware
verification is not the subject of this paper, we note that
successful application to hardware design is a strong
indication that similar success with software is possible.

Specification analysis is the area within the soft-
ware domain where theorem provers are being used.
Lutz and Ampo applied mechanical analysis tools, spe-
cifically PVS, to the requirements analysis of critical
spacecraft software [13]. This project consisted of spec-
ifying and analyzing the requirements for portions of the
Cassini spacecraft’s system-level fault-protection soft-
ware. This project was more of an experimental study
examining the applicability of formal methods and
mechanical analysis to industrial software practices.

2.3 Evaluation of Formal Methods

Various authors have proposed evaluation criteria for
formal methods and used them in a variety of ways.
Rushby introduced some ideas intended to help practi-
tioners select a verification system and also offered a set
of evaluation criteria for specification notations [15].
Faulk also proposed a set of evaluation criteria for spec-
ification notations [5].

A comprehensive approach to evaluation and some
results were presented by Ardis et al [1]. In this work, a
set of criteria was established for the evaluation of for-
mal specification notations and the set was then applied
to several notations. The evaluation was performed on a
sample problem from the field of telecommunications.

3 Evaluation Framework

3.1 Framework Basis

Our objective was to evaluate formal methods in a sys-
tematic manner, and an evaluation framework enabled
us to generate a clear and complete set of evaluation cri-
teria. The alternative was merely to develop a list of
seemingly relevant criteria, but such an ad hoc list,
though it might appear useful, leaves three important
questions unanswered:

¢ Where did the criteria on the list come from?
* Why are the criteria on the list considered important?
¢ Is the list complete?

Questions such as these are not answered readily
from a list of criteria. An investigation of the develop-
ment of the criteria could answer these questions, but
the framework summarized here provides a defendable
list of criteria for the evaluation of specification lan-
guages and mechanical analysis tools.

The basis of our evaluation framework is software
development and the associated software lifecycle. In
other words, we seek to discover how formal methods
contribute to software development and how they fit
into the software lifecycle. The criteria used for an eval-
uation of formal methods should ultimately return to the
question, “How will this help build better software?”,
where the definition of better is not restricted to a cer-
tain set of goals. There are two aspects to this ques-
tion—first,” what is needed to build software and,
second, how can the use of formal methods augment the
current development practices of industry to help build
“better” software?

The question of what is needed to build software
leads us to examine current practice. Current methods of
software development divide the activities into lifecycle
phases. Such a division focuses the developers’ atten-
tion on the tasks that must be completed. But the lifecy-
cle alone is not sufficient to describe the current process
of building software since development is guided by
program management activities. These activities con-
tinue throughout the lifecycle, monitoring and directing
1t.

An evaluation of formal methods technologies must
examine their compatibility with current practice and
the actual benefits they realize over the entire lifecycle.
In order to be accepted by industrial practitioners, for-
mal methods have to meet certain objectives:

* They must not detract from the accomplishments
achieved by current methods.

» They must augment current methods so as to permit

industry to build “better” software.

* They must be consistent with those current methods
with which they must be integrated.

* They must be compatible with the tools and tech-
niques that are in current use.

A further difficulty is that each project has different
practical requirements. For instance, if the goal of a
project is to be the first commercial vendor to develop a
certain networked Java application, the reliability is less
important than the speed of production. In this context,
“better” software would probably imply a faster time to
market, whereas in a safety-critical system, “better”
would refer to greater reliability of the software.

We present here only a sample of the framework
because of space limitations. The complete framework
is in two major parts—one for formal specification and
the other for mechanical analysis techniques. The
framework is structured by the six phases of the soft-
ware lifecycle—requirements analysis, requirements
specification, design, implementation, verification, and
maintenance—and for each phase a set of criteria that
must be met have been identified and documented along
with the rationale for each.

As an example of the way in which the framework
operates, consider the oft-cited criterion that a formal
specification language must be “readable”. In practice,
this is completely inadequate as a criterion because it is
imprecisely defined and is untestable. In practice, a for-
mal specification is read by engineers with different
goals, skills, and needs in each phase of the lifecycle.
What is readable to an engineer involved in developing
a specification is not necessarily readable to an engineer
using the specification for reference during implementa-
tion or maintenance. Thus, there are in fact many impor-
tant criteria associated with the notion of a readable
specification—the criteria are determined by the lifecy-
cle phase and their relative importance by the product
goals.

A selection of the criteria used for formal specifica-
tion in the framework is presented in the next subsec-
tion. For brevity here, they are not broken down by
lifecycle phase. In addition, they were chosen for illus-
tration and are in no sense complete. In general, we use
criteria for illustration that have not been noted by oth-
ers, and we include the rational for each.

3.2 Criteria for Formal Specification

* Coverage.
Real systems are large and complex with many
aspects. For a specification notation to serve well, it
must either permit description of all of an application

or be designed to operate with the other notations that
will be required.

Integration with other components.

A specification is not developed in isolation, but
rather as part of the larger software development pro-
cess. Any specification technology must integrate
with the other components of this process, such as
documentation, templates, management information,
and executive summaries. Often a system database
and version control system are used. A part or all of
the specification might be inserted into another docu-
ment, so the specification must have a common file
format. There will almost always be the need for a
printed version of the specification. It should be easy
to print the entire specification, including comments
and non-functional requirements, in a straightforward
manner. The formal method technology must be
suited to the larger working environment.

Group development.

Every software project involves more than one per-
son. During the development of the specification, it
must be possible for several people to work in paral-
lel and combine their efforts into a comprehensive
work product. This means that any specification tech-
nique must provide support for the idea of separate
development—a notion equivalent to that of separate
compilation of source programs in languages such as
Ada that have syntactic structures and very precise
semantics forseparately compiled units.

Evolution.

A specification is not built in one effort and then set
in concrete; it is developed and changed over time.
The specification technology must support the logical
evolution of specification and ease its change.
Incompleteness must be tolerated. Functionality such
as searching, replacing, cutting, copying, and file
insertion must be provided. Modularity and informa-
tion hiding must be facilitated, so that for example a
change in a definition is automatically propagated to
every usage of it. Large scale manipulations must
also be supported, such as moving entire sections or
making them subsections.

Usability.

The ability to locate relevant information is a vital
part of the utility of a specification. The ability to
search, for example with regular expressions is valu-
able, but not sufficient. The specification is intended
to serve as a means of communication. Annotating
the specification with explanations, rationale, or
assumptions is important for both the use of the spec-
ification in later phases and for modifications of the
specification. This annotation must be easy to create

and access, and it must be linked to a part of the spec-
ification, so that changes effect the corresponding
annotation. The formal method should also provide
structuring mechanisms to aid in navigation since the
specification document is likely to be large. In a natu-
ral language document, the table of contents and
index assist in the location of information; many tools
allow them to be generated automatically from the
text. Another useful capability seen in text editing is
the use of hypertext links to a related section or glos-
sary entry. Formal methods must address the usability
of the resulting specification documents.

Compatibility with design tools.

A very strong relationship exists between the specifi-
cation of a system and its design, therefore the tools
should also be closely related. It should not be neces-
sary for the designer to re-enter parts of the specifica-
tion that are also part of the design. Either the
specification tool must also fully support the design
phase or it must be compatible with common design
tools.

Compatible with design methods.

Just as the specification technology must be the same
as or compatible with popular design tools, it must
also be compatible with popular design methods. A
difficult transition from a formal specification to say
an object-oriented design is an unacceptable lifecycle
burden.

Communicate desired system characteristics to
designers.

In order to design the system, the designer must be
able to read and understand the specification. Natu-
rally, the specification should describe the normal
operating procedure, any error conditions and the
response that is appropriate, and non-functional
requirements. The specification has to answer every
question raised about the system by the designer
(who is not likely to be an author of the specifica-
tion).

Facilitate design process.

The more easily a design can be developed from the
specification, the better. The use of a formal methods
could speed up the design process by describing the
system clearly and precisely. The designer must take
the abstract description in the specification and
describe how a real system is going to implement the
specification. Information hiding must be maintained
and the ability to view the system at varying levels of
abstraction must be provided.

Implementation performance.
Implementation is hindered by any lack of clarity in
the specification (and design) and misunderstandings

that cause rework. The more complete, precise, and
detailed the specification and design are, the more
smoothly implementation will go. An improvement
in implementation efficiency is expected, therefore,
from the use of formal specification because of its
ability to achieve clarity and precision. This effi-
ciency improvement is a critical element in the over-
all cost effectiveness that is realized by introducing
formal specification into the lifecycle.

Support for unit testing in implementation phase.

A precise, complete, and accurate specification can
greatly aid in the formulation of a unit test suite, per-
haps through automatic generation. It should also
minimize rework, since the requirements are well
defined and unambiguously stated in the specifica-
tion. Again, this expected benefit is a critical element
in the overall cost effectiveness argument.

Maintenance comprehension.

An engineer responsible for maintenance should be
able to study the specification and gain either a broad
or detailed understanding of the system quickly. The
documentation of non-functional requirements and
design decisions is vital to a complete understanding
of the system. The specification should be easy for
the maintainer to navigate, accurate, complete, and
easy to reference to find answers to questions. Struc-
ture, support for information hiding, and the ability to
view the specification at different levels of abstrac-
tion are essential.

Maintenance changes.

When a change is made to an operational software
system, the specification, the design, the implementa-
tion, and the verification must be changed. This is
clearly facilitated if the different work products are
carefully linked together so the changes needed in the
code, for example, are very similar to those in the
specification. In many current developments the
specification is changed as an afterthought or not at
all. Ideally the specification should be changed first
to examine the effects of the change on the system.
This requires that the specification be easily changed
and that the document remains well-structured. Once
changed, formal methods could allow static analysis,
animation, or even the establishment of proofs of
properties on the new specification before the change
is propagated to the code. Clearly both validation and
verification of a maintenance change are important
and lifecycle support is required.

4 Experimental Evaluation

To evaluate the utility of a formal technique in industrial
practice with any degree of statistical rigor, the tech-
nique must be tested in a large number and variety of
projects. The projects chosen for study should encom-
pass a wide range of application areas with a variety of
goals. The population of engineers involved should con-
sist of experienced industrial software practitioners,
including clients, managers, designers, developers, tech-
nical writers, and maintainers. Finally, projects should
be followed from conception through a period of main-
tenance, and measurements of productivity and product
quality made before and after the addition of formal
methods to the development process, so that a compari-
son can be made.

Unfortunately, a study‘ with these characteristics
would require many years, the cooperation of thousands
of people, and is beyond the scope of this endeavor. The
study reported here is quite modest and the results corre-
spondingly modest. What we report: (a) is based on a
single application of a particular type; (b) comes from a
single development activity; (c) involves specifications
that have not yet proceeded to implementation; and (d)
is based on specifications that were not developed by
experts.

We have applied the evaluation framework to a
small but realistic safety-critical application in order to
obtain assessments of various formal techniques. The
application is the University of Virginia Reactor
(UVAR), a research reactor that is used for the training
of nuclear engineering students, service work in the
areas of neutron activation analysis and radioisotope
generation, neutron radiography, radiation damage stud-
ies, and other research [16].

The experimental evaluation was conducted by first
developing three separate specifications for part of a
control system for the reactor in three specification lan-
guages—Z, PVS, and Statecharts—and establishing
proofs of safety properties of the PVS specification
using the PVS system. During the creation of these arti-
facts, various observations and measurements were
made by those involved in the development. Once the
artifacts were complete, a second set of observations
and measurements were made by the developers, com-
puter scientists not involved in the development, and
nuclear engineers and reactor operational staff.

4.1 The Case Study Application

The UVAR is a “swimming pool” reactor, i.e., the reac-
tor core is submerged in a very large tank of water. The
core is located under approximately 22 feet of water on
an 8x8 grid-plate that is suspended from the top of the

Cooling
Tower

Heat
Exchanger

Safety Rods

Experiments n

Regulator Rod
Control

Sensor Data

Reactor Core

Header

O

Pump

Fig. 1. - The University of Virginia reactor system.

reactor pool. The reactor core is made up of a variable
number of fuel -elements and in-core experiments, and
always includes four control rod elements. Three of
these control rods provide gross control and safety. They
are coupled magnetically to their drive mechanisms, and
they drop into the core by gravity if power fails or a
safety shutdown signal (known as a “SCRAM”) is gen-
erated either by the operator or the reactor protection
system. The fourth rod is a regulating rod that is fixed to
a drive mechanism and is therefore non-scramable. The
regulating rod is moved automatically by the drive
mechanism to maintain fine control of the power level
to compensate for small changes in reactivity associated
with normal operations [16].

The heat capacity of the pool is sufficient for
steady-state operation at 200 kW with natural convec-
tion cooling. When the reactor is operated above 200
kW, the water in the pool is drawn down through the
core by a pump via a header located beneath the grid-
plate to a heat exchanger that transfers the heat gener-
ated in the water to a secondary system. A cooling tower
located on the roof of the facility exhausts the heat and
the cooled primary water is returned to the pool. The
overall organization of the system is shown in Fig. 1.

The evaluation that we undertook involved the
development of formal specifications for the following

three components of a proposed new digital control sys-
tem:

« the alarm system that alerts the operator of conditions
needing attention;

« the logic associated with shutting the reactor down in
the event of a possible safety problem (the SCRAM
logic); and

* the activities undertaken by the operator to start the
reactor operating.

For the sake of brevity, we only summarize the
results of the study' in the following subsections. The
first subsection address the specific evaluation criteria
outlined earlier and reflect the experience of the devel-
opers. The next subsection itemizes specific results
obtained from the nuclear engineers. The last subsection
documents results obtained from computer scientists

4.2 Specification Assessment By Developers

e Coverage.
Our experience with the UVAR specifications is simi-
lar to that of others—many things that have to be

1. Further details can be found elsewhere [3. 6].

specified are not covered by any of the notations we
are using. A particularly significant example is the
user interface. For systems like the UVAR, the user
interface is complex, absolutely critical, and must be
formally specified. Even though a model-based spec-
ification notation, like Z for example, is not really
suitable for such specification, its integration with
other notations is essential.

Integration with other components.

There is a complete lack on compatibility of the tools
for the three notations with common text preparation
systems. It is remarkably difficult, for example, even
to get a printed copy of a specification in any of these
notations. Worse is the fact that non-formal elements
of a specification cannot be included in a specifica-
tion and manipulated in a consistent way. A complete
specification is more than the formal part. In the
UVAR specification, for example, extensive technical
background material has to be included.

Group development.

Statemate offers some support for version control and
access control but neither Z nor PVS provide either.
The latter is actually preferable because artifacts
using the notations can then be handled by existing
tools. The Statemate approach to projects and users is
completely inconsistent with that which large
projects are likely to be using for other purposes.

Support for separate development (akin, as noted
above, to separate compilation of source code in lan-
guages like Ada) is completely absent from all three
notations.

Evolution.

The structure of both standard Z and the PVS specifi-
cation notation offer no support for building specifi-
cations with any structure that facilitates evolution.
Even the elementary notion of information hiding is
absent. Statecharts offer some limited support using
the hierarchical chart facility. In the UVAR specifica-
tion, for example, there is extensive material related
to physical devices that might change over time. Sim-
ilarly, since the digital system is experimental, the
concepts it includes are subject to change.

Usability.

Both the structure and the tool support associated
with these three notations provide essentially no sup-
port for navigation and searching of a specification.
The PVS specification for the UVAR, for example,
defines literally dozens of identifiers. Reading, navi-
gating, and changing a specification of even the
UVAR’s moderate size is difficult and error prone.

» Compatibility with design tools and design methods.
Although specification and design are supposed to be
separate activities, there is always a lot of overlap.
The SCRAM logic for the UVAR; for example, is a
significant part of the specification and a clear imple-
mentation structure is implied by the basic function-
ality required. Despite this, neither Z nor PVS
provides a systematic link to any design methods or
tools, nor do they explicitly avoid doing so in an
effort to support generality. Statemate, on the other
hand, embeds the notion of data flow diagrams into
the basic specification structure and thereby biases
designs towards structured design, an approach that is
not universally preferred.

4.3 Specification Assessment By Nuclear
Engineers

The following results were obtained by interview. For
each of the specification notations, the notation and the
associated specification were presented to a nuclear
engineer and then the engineer was asked a series of
questions derived from the evaluation framework. This
process was repeated twice for each notation (making a
total of six interviews in all).

The presentation of the notation was informal and
brief, intended only to permit the nuclear engineer to
understand the subsequent presentation of the specifica-
tion. The presentation of the specification was intention-
ally very much like an inspection. As a result, we were
able to get very specific information about how under-
standable the specifications were to domain experts.
This is an important issue since, for the most part,
human inspection is the primary vehicle for specifica-
tion validation.

The results were quite unexpected and the detailed
discussion resulting from the interviews was more
enlightening than the specific answers to the framework
questions. The majority of the following are observa-
tions that resulted from these discussions. The first three
points are general and the remainder are language spe-
cific.

* The role of the specification has to be understood.
Communicating with people from a different field of
expertise is always difficult. In this experiment, a par-
ticularly troublesome issue was the role of the speci-
fication in software development—the nuclear
engineers were not familiar with this role. One of the
participants considered one of the specifications to be
source code and wanted to see the execution to check
correctness. Another considered it a summary that
should be easy to read and not contain many details.
The lesson learned was that it is vital that application

engineers understand the role of a specification
before trying to read or manipulate one.

Direct and indirect influence on the system are diffi-
cult to distinguish.

A common difficulty for the nuclear engineers in
understanding the specifications was with the differ-
ence between direct and indirect influence on the
state of the system. The nuclear control system is
reactive—it is constantly making alterations in
response to input received from sensors. A change in
the height of a rod causes changes in the sensor val-
ues. The height of the rod can be altered directly by
the system, but the sensor values change indirectly as
a result of the movement of the rod.

The formal specification notations designate parts of
the system that can be influenced directly differently
than those that cannot, for example Z uses primed
identifiers to indicate items that are changed directly
by operations. These designations were a constant
source of questions because, along with the changes
in the system from direct influence, there are
expected indirect changes in the state of the system.
By no means is this an argument to abolish the sepa-
rate designations for items that can be directly influ-
enced, rather to point out a difficulty in understanding
these notations that is forgotten once the notation is
familiar.

The use of symbolic constants is problematic.

An interesting anecdote involves the use of constants.
It is customary, in fact preached, in computer science
that constants should be defined in one place and
given symbols so that no “magic” numbers are used
throughout the rest of the system. The reasons are
first that the numbers are unexplained, and second
that every location of use has to be found if the con-
stant is changed. To most of the nuclear engineers,
this organization was clear and desirable since they
did not have the constants memorized and the values
would have to be checked against other documenta-
tion in an effort separate from the general perusal of
the specification. However, one participant was con-
fused by the use of constant identifiers rather than
numbers because the specific values have important
meanings in the context of the application.

There is no road back to natural language specifica-
tion.

Once the nuclear engineers had experience with one
or more of the formal specification notations, they
said they would never trust a natural language speci-
fication again. They were impressed by the level of
understanding of the system that was required to
write the specifications and felt that with natural lan-

guage they could never be sure that the words were
not just copied down with little understanding of the
system. While they would have liked some natural
language to accompany the formal specifications,
they wanted to retain the formalisms.

4317

* Effective for communication.

The Z specification was described as meaningful and
useful for communication by the nuclear engineers.
One participant felt comfortable with the notation
after a short period of time, no longer needed full
translations of the schemas, and began to find errors
in the specification. This participant felt that, after a
few iterations of discussion and correction of the
specification, he would feel that there was a mutual
understanding of the system.

Mathematical notation is not familiar.

A surprising discovery was that the mathematical
notation used in Z was not familiar to the nuclear
engineers. One participant expressed the desire for a
glossary of symbols, including for all, there exists,
and implies. Another asked why words, which are
universally understood, were not used in place of the
symbols.

Validation by inspection was effective.

In this case, the presenter of the Z specification was
not the author, but another computer scientist familiar
with the project, and the process of explaining the
specification to the nuclear engineers uncovered
errors. This helps to substantiate the generally
accepted view of the community that inspection is
valuable and cost effective.

4.3.2 PVS

o Looks like source code.

The first impressions of the PVS specification were
that it looked like source code, it was too long, and
there was too much text. One participant said he did
not even want to try to read it. Another criticism from
another participant was that there were too many
variables leading to confusion.

Validation by inspection was effective.

Although one of the participants was not comfortable
reading the PVS notation, a detailed explanation of
the specification facilitated useful discussions that
identified errors in the specification and in the speci-
fiers” understanding of the system. One way that this
occurred was that the nuclear engineer asked ques-
tions to check the model. He identified a misunder-
standing of the power levels of the reactor that
necessitated the redesign of a section of the specifica-

tion. If this error had not been found until the system
had been implemented, it would have been impossi-
ble to increase the power level of the reactor above
about half of the value at which it is licensed to oper-
ate. The use of meaningful variable names was key to
the understanding of the specification.

In addition to errors found by the nuclear engineers,
presenting the specification caused the specifier to
discover an error in his own specification.

4.3.3 Statecharts

 Effective for communication.

After less than an hour of introduction to the State-
charts notation and specification, one participant was
no longer intimidated by the notation and was able to
understand the specification without assistance. The
graphical notation was appealing, as well as the obvi-
ous flow of the system following the arrows. The cli-
che “a picture is worth a thousand words” was used
repeatedly. The structure of the specification was
much more evident in Statecharts than the other two
notations because of its hierarchical nature.

* Difficult to search and navigate.

In a very detailed examination of the specification,
participants complained of the difficulties of knowing
the state of the whole system at once and of identify-
ing the results of actions since the actions could affect
any page of the specification. Whenever the details of
a state were included in the diagram of that state
rather than being saved in another file, the lack of
abstraction seemed to be confusing.

» Easy to learn.

Within two hours of discussion of the specification,
the participants displayed the desire to learn the syn-
tax of the notation in order to understand the subtle-
ties of the specification. A large number of errors
were identified during the discussion of the specifica-
tion and the need for additional robustness was evi-
dent. The participants found the specification easy to
understand with the explanation from the specifier
and felt that they could then continue to study it
alone. They also felt comfortable enough with the
notation that, if there were changes to be made to the
system, they felt they could write Statecharts of the
proposed changes.

* Specification is superior to existing documentation.
The participants from the nuclear reactor staff felt
that the specifiers understood the system better than
most of the operators. They felt that they could even-
tually come to an agreement that the Statechart speci-
fication correctly described the system and did not
feel that they would have the same confidence with

an English document. They said that this specifica-
tion had the potential to be used in the training of
their operators and perhaps even to replace their SAR
which describes the control of the nuclear reactor.
These are significant comments.

4.4 Specification Assessment By Computer
Scientists

The participants in this portion of the study were seven
computer science students. There was one undergradu-
ate, four students working toward or finished with a
master’s degree, and two Ph.D. candidates. Two partici-
pants had a year or less work experience developing
software, three had one to five years experience, and
two had more than five years of work experience. All
had knowledge of the C programming language.
Regarding their experience with formal specification
methods, four had no experience prior to this study, two
had a segment of a course, and one had an entire course.
All had some, but not extensive, knowledge of basic sci-
ence and engineering and little to no knowledge of
nuclear reactors.

44.1Z

* Fairly easy to understand, navigate, and search.

The Z specification was generally well-structured and
this aided the participants in understanding and
searching the specification. However, one participant
expressed difficulty locating the definitions of types
since they are not defined near their use and another
suggested that the specification would be easier to
search, navigate, and use for reference if there were a
table of contents. The participants felt strongly that Z
would aid communication about the system, however
they considered it only average for use in the mainte-
nance phase as an introduction to the system and as a
reference document about the system. Familiarity
with logic symbols, the smallness and simplicity of
the notation, and the natural language descriptions
aided the participants in understanding the specifica-
tion.

* Reasonably easy to learn.
None of the participants felt very confident in their
ability to use Z after this short introduction. A few of
the participants felt that Z was harder to learn than a
programming language, but most felt that it was as
easy or easier to learn. Difficulties in learning Z were
attributed to the mathematical notation, the unusual
delimiters of inputs and outputs, and the unfamiliarity
of the notation in general. No one thought that Z was
too large a notation and almost everyone thought the
complexity of the notation was appropriate for speci-

fication.

Implementable.

After a thorough inspection of the description of the
SCRAM logic in the specification, everyone saw
ways that it could be implemented. No one was sure
that the description was complete, however. Some
participants found errors in the specification. Upon
quick perusal of the rest of the specification, almost
everyone felt that all the features of the notation were
implementable. It was practically unanimous that Z
provided the appropriate level of detail about the sys-
tem for a specification.

4.4.2 PVS

* Difficult to understand, navigate, and search.

Although PVS is structured a lot like source code in
C (of which all participants claimed a lot or extensive
knowledge), it received low ratings in the areas of
structure, understandability, and searching. One par-
ticipant cited the formatting as hindering understand-
ing. It was deemed average to bad for use during the
maintenance phase as an introduction to the system or
as a reference document. The answers were widely
varied as to whether PVS would aid communication
between people involved in the software develop-
ment process.

Ease of learning mixed.

None of the participants felt confident using PVS
after this short introduction. Most felt that PVS was
as easy or easier to learn than a programming lan-
guage, but a few felt that it was harder to learn. No
one thought that the PVS notation had too few fea-
tures and most people thought that it had the appro-
priate amount of complexity, while a few felt that it
was too complex. Difficulties in learning the notation
were attributed to the size and complexity of the nota-
tion and the difficulty in understanding the keywords
and constructs. However, some participants felt that
the keywords and constructs were easy to learn and
PVS was similar to other notations with which they
were familiar.

Implementable.

After examining the scram logic in the PVS specifi-
cation, everyone saw ways that it could be imple-
mented, but a few saw some problems. No one was
certain whether the description of the scrams was
complete. After a quick inspection of the rest of the
specification, the participants felt that everything was
implementable. There was a wide range of responses
when asked whether PVS provided the appropriate
level of detail for a specification.

10

4.4.3 Statecharts

» Easy to understand.

Statecharts was described as well-structured and this
aided the participants in understanding the specifica-
tion. Difficulties in understanding the specification
were attributed to the global nature of events and the
division of the specification over many pages. The
responses indicated strongly that Statecharts would
aid communication between people in the develop-
ment of a software product.

* Difficult to navigate and search.
The structure of Statecharts aided in searching, but
one participant noted that the specification would be
easier to navigate, search, and use as reference, if it
had a table of contents. It was deemed average for use
in the maintenance phase as an introduction to the
system and as a reference document.

» Fairly easy to learn.

The participants did not feel confident in their ability
to specify a system using Statecharts at this point.
Difficulties in learning Statecharts were attributed to
the notation being unlike any notation they had seen
before and the constructs being difficult to under-
stand. However some people felt that Statecharts was
easy to learn because the notation was familiar,
graphical, small and simple, and the constructs were
easily understood. Most of the participants thought
that Statecharts was as easy or easier to learn than a
programming language.

* Implementable.

After studying the scram logic described in the State-
charts specification, everyone saw ways to implement
it, however no one was certain the description was
complete. After a quick survey of the specification,
almost every participant thought that all the features
of the notation were implementable. It was almost
unanimous that Statecharts provided the appropriate
level of detail about the system. Most of the partici-
pants thought that Statecharts notation contained the
appropriate level of complexity.

4.5 Mechanical Analysis With PVS

The PVS specification was subjected to limited analysis
with the PVS theorem-proving system. The purpose was
to evaluate the difficulties involved in dealing with this
modest sized specification and to learn what the practi-
cal issues might be that are limiting the wide-spread
application of mechanical theorem proving. This part of
the study was performed by the authors.

The conclusions from this part of the study fall into
two basic categories. The first concerns the “method”

part of formal methods. Devising the requisite theorems
and developing a proof strategy for them proved to be a
significant challenge and there is no real “method” that
can assist the specifier.

The second category of conclusions is in the area of
tool performance. Although the PVS system is very
powerful, this power is difficult to use. Some of the dif-
ficulties with the tool are the following:

* Syntax and type checking are laborious because the
system reports errors individually.

* The specification interface is very awkward to use
since, for example, it does not permit many display
items to be customized, does not provide status infor-
mation conveniently, and lacks expressivity.

* Navigation through a specification using the toolset
is extremely labored.

» The variation in delays that occur with different user
actions makes interactive use very difficult.

* The theorem prover interface is awkward to use
since, for example, information is not displayed con-
veniently during proof attempts, proofs are re-dis-
played after invalid commands, and certain
commands generate an overabundance of output.

These and many other observations lead us to con-
clude that the practical adoption of mechanical theorem
proving by industrial practitioners is being severely lim-
ited by one major problem—the difficulty of determin-
ing what should be proved to gain confidence in a
specification, and one relatively minor problem (or at
least a problem that should be minor)—the relatively
poor usability of the toolset.

5 Conclusions

Our assessment of the formal technologies that we used
is that there are many practical barriers to their routine
use in industrial software development projects. In most
cases, this will not be “news” either to the developers of
the techniques or the community at large. In fact, some
developers have been quite open in their discussion of
the pragmatic weaknesses of their technologies. Thus,
we offer little specific new information. However, the
accumulation of all the different criteria in our frame-
work together with their systematic development pro-
vides a clear picture of what is needed to achieve
success in industrial applications. It is important to keep
in mind that the criteria are not sufficient, merely neces-
sary.

Several of our results are surprising but two are
repeated here because of their significance. Both of

11

these comments arose during the interviews with the
nuclear engineers:

They felt that they could eventually come to an
agreement that the Statechart specification
correctly described the system and did not feel that
they would have the same confidence with an
English document.

Once the nuclear engineers had experience with
one or more of the formal specification notations,
they said they would never trust a natural
language specification again.

These are very positive comments although when read-
ing them it must be kept in mind that the nuclear engi-
neers involved had been exposed to this technology for
only a short time. However, these remarks provide
strong motivation for continued work in the area of for-
mal methods.

Perhaps the most important conclusion to be drawn
from this work is that the framework provides a detailed
research agenda for workers in this field. The potential
is tremendous but unless the criteria in the framework
are met by specific formal methods, their chance of
widespread acceptance is remote at best.

6 Acknowledgments

It is a pleasure to acknowledge those who patiently
described the requirements of the UVAR control system
including Tom Doyle, Bo Hosticka, Don Krause, Bob
Mulder, and Reed Johnson. The participants in this
study also deserve recognition: Roger Rydin, Reed
Johnson, William Dixon, Jim Kelly, Bob Mulder, Tom
Doyle, Emily West, Dale Newfield, Russ Haddleton,
Craig Chaney, Cassie Trontoski, Meng Yin, and Chenxi
Wang. This work was supported in part by the National
Science Foundation under grant number CCR-9213427,
in part by NASA under grant number NAG1-1123-FDP,
and in part by the U.S. Nuclear Regulatory Commission
under grant number NRC-04-94-093. This work was
performed under the auspices of the U.S. Nuclear Regu-
latory Commission. The views expressed are those of
the authors and do not necessarily reflect the position or
policy of the U.S. Nuclear Regulatory Commission.

References

[1] Mark A. Ardis, John A. Chaves, Lalita J. Jagadee-
san, Peter Mataga, Carlos Puchol, Mark G.
Staskauskas, and James Von Olnhausen. A Frame-
work for Evaluating Specification Methods for
Reactive Systems: Experience Report. IEEE

Transactions on Software Engineering, 22(6):378-

2]

[3]

(4]

(5]

[6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

389, June 1996.

Dan Craigen, Susan Gerhart, Ted Ralston. An
International Survey of Industrial Applications of
Formal Methods. U.S. Department of Commerce,
March 1993.

Colleen L. DeJong, Matthew S. Gibble, John C.
Knight, and Luis G. Nakano. Formal Specification:
A Systematic Evaluation. Technical Report CS-97-
09, Department of Computer Science, University
of Virginia, Charlottesville, VA, June 1997.

David Dill and John Rushby. Acceptance of For-
mal Methods: Lessons from Hardware Design.
IEEE Computer, 29(4):23-24, April 1996.

Stuart Faulk. Software Requirements: A Tutorial.
Technical Report NRL/MR/5546—95-7775, Naval
Research Laboratories, November 14, 1995.

Matthew S. Gibble and John C. Knight. Experi-
ence Report Using PVS for a Nuclear Reactor
Control System. Technical Report CS-97-13,
Department of Computer Science, University of
Virginia, Charlottesville, VA, June 1997.

Anthony Hall. What is the Formal Methods Debate
About? IEEE Computer, 29(4):22-23, April 1996.

Kathryn L. Heninger. Specifying Software
Requirements for Complex Systems: New Tech-
niques and Their Application. IEEE Transactions
on Software Engineering, 6(1):2—13, January,
1980.

C. Michael Holloway and Ricky W. Butler. Imped-
iments to Industrial Use of Formal Methods. IEEE
Computer, 29(4):25-26, April 1996.

Constance Heitmeyer and John McLean. Abstract
Requirements Specification: A New Approach and
Its Application. IEEE Transactions on Software
Engineering, 9(5), Sept. 1983.

I. Houstan and S. King. CICS Project Report:
Experiences and Results from The Use Of Z In
IBM. VDM 91. Formal Software Development
Methods, Vol. 1: Conference Contribution. Lecture
Notes in Computer Science, Volume 552, Springer
Verlag, 588-596.

Some industrial uses of iLogix tools can be found
on-line at: <http://www.ilogix.com/company/suc-
cess.htm>, 1997.

Robyn Lutz and Yoko Ampo. Experience Report:
Using Formal Methods For Requirements Analysis
Of Critical Spacecraft Software. In Proceedings of
the 19th Annual Software Engineering Workshop,

12

[14]

[15]

[16]

pp. 231-248, Greenbelt, MD, December 1994.
NASA Goddard Space Flight Center.

C. R. Nobe and W. E. Warner. Lessons Learned
from a Trial Application of Requirements Model-
ing using Statecharts. In Proceedings the Second
International Conference on Requirements Engi-
neering, pp. 86-93, April 15-18, 1996.

John Rushby. Formal Methods and the Certifica-
tion of Critical Systems. Technical Report CSL-93-
7, SRI International, December 1993.

University of Virginia Reactor, The University of
Virginia Nuclear Reactor Tour Information Book-
let can be found on-line at: <http://min-
erva.acc. Virginia EDU/~reactor/>, 1997.

Plotting The Escape from The Tower:
A Formalist’s Practicality Primer

James M. Sutton

james.m.sutton-iii@boeing.com
Boeing North American
1800 Satellite Blvd., Mail Stop DL23
Duluth, Georgia 30155

Abstract

Formality will eventually become the norm in soft-
ware development. It will happen for the same rea-
sons that formality has become the norm in every
other engineering discipline: Quality, confidence,
objectivity, and even cost only make their greatest
strides when mathematics becomes the basis for a
discipline.

The theory of software formality has matured
greatly in the last ten years. Enough is now under-
stood to make formality useful not just to academia
but also to industry. The main impediment to wide-
spread adoption is financial: as formal methods are
typically applied, they cost their users more than they
pay them back. Nobody gets career credit for “doing
the right thing” to the detriment of their company.

Thus, formality will only be adopted when it pays
its own way. This is already happening on a few
projects. Achieving payback requires treating the
software lifecycle as an integrated whole of which
formality is just one aspect.

The formal methods available at present share
similar strengths and weaknesses. An effective for-
mal process takes advantage of those strengths and
compensates for those weaknesses. Compensation
comes through integration...using other methods and
approaches to “fill in” where formal methods are
weak, while allowing their strengths to continue to
shine.

In such a context formal methods have proven, on
real industrial projects, they can benefit everyone and

13

become the best business option. Adoption then fol-
lows without a need for further cajoling or coercion.

This paper will explore the use of formality in a
practical and self-justifying way, in the realistic in-
dustrial setting. The principles given will be illus-
trated from Boeing North American’s development
of the Brimstone missile system, and other programs.

1 Philosophical Foundations

Practicality always boils down to economics. If a
method is so unpleasant or difficult to use that work-
ers resist it or simply never become proficient, pro-
ductivity suffers and money is lost. If a method re-
quires such expensive tooling that resource costs can
never be recouped before technology evolution has
obsoleted the tool, and if productivity gains from that
tool’s use are less than the capital loss, again there is
no net benefit.

Therefore, the “gatekeeper” for adoption of for-
mality is that the benefits from its use must exceed its
costs. The challenge is to find ways of using formal-
ity which maximize benefits and minimize costs until
breakeven is achieved. As one would expect, the
benefits of formality come from its strengths, while
the costs come from its weaknesses.

The strengths of formality are already benefiting
users regularly. They are well known and under-
stood: assurance of internal correctness, consistency,
completeness, traceability and so forth. Much work is
ongoing to further improve these strengths.

The weaknesses of formality are also well known.
They include labor intensiveness, poor communica-

bility to others than formalists. lack of scaleability to
handle large problems, and poor efficiency in the
face of system change.

These weaknesses typically receive somewhat
less attention than do the strengths, perhaps because
we assume that little can be done about them for now
(placing our hopes on future breakthroughs in formal
technology to somehow reduce the problems). How-
ever, the assumption of present helplessness is incor-
rect.

Since significant benefits are already being ob-
tained from the strengths, most of the challenges in
making formality practical are currently found in
ameliorating its weaknesses and thus reducing its
costs. Not only are the weaknesses reducible, they
have on occasion been effectively overcome to make
formality a net contributor to project financial suc-
cess.

In industrial process engineering, one combines
differing methods, tools or procedures so the
strengths of some will always be offsetting the weak-
nesses of others. The goal is to yield products of
higher quality and better profitability than could have
been obtained through the use of any of the methods,
tools or procedures in isolation.

When formal methods are incorporated into the
industrial software development process, the formal
methods chosen must either be those whose weak-
nesses are most easily ameliorated, or those which
possess weaknesses to the least degree.

Then synergies must be found with non-formal
(at least, for now) methods or approaches to offset
the formal-method weaknesses. The formality must
be “framed” in such a way that, despite its low scale-
ability, large programs can still be created. Since
change is a primary characteristic of most product
developments, formal methods must be couched such
that system change propagates as little as possible
and thus has minimal effect on formal product ele-
ments. And so on.

This is the approach being taken on significant
portions of Boeing North American’s development
on the Brimstone missile system, as well as the ap-
proach taken on the mission software of the Lock-
heed Martin C-130J airlifter (in which the author also
participated [1]). Resonance with aspects of this
viewpoint have also been found on certain other
projects, primarily the NRL's (Naval Research Labo-
ratory) A-7 Avionics Upgrade Program [2], Allied
Signal’s TCAS system [3], and Rockwell Avionics

14

and Communications Software Requirements Engi-
neering Project [4].

Discussing these principles in a paper for a formal
methods conference can give the impression that the
rationale for creating such an approach is to bring
formal methods into the software development
mainstream. Nothing could be further from the truth.
The rationale is to make industry more productive
and competitive. Formal methods are of interest to
industry only inasmuch as they contribute to that
goal. Ultimately, the ability of formal methods to
now do so is one of the best things that has ever hap-
pened to the discipline of formality.

2 Process Guidelines

There are two overarching guidelines for creation of
a software lifecycle which supports the goal of indus-
try, i.e., that increases productivity and competitive-
ness. Those guidelines are:

e correctness by construction

e verification-driven development

2.1 Correctness by Construction

Software errors are one of the biggest cost drivers
in industry. Software errors have many kinds of
costs. Verification, with its associated activity of cor-
rection, is almost always the most costly and time-
consuming activity in software development.

The more errors there are present, the greater the
cost in finding, removing, and confirming removal of
them. Errors also cost in lost customer confidence
and good will, creation of an adversarial relationship
with regulators and government, and in the fallout
from failures in fielded systems. And since it is in
general impossible to detect all errors in a program,
the more errors injected as the code is produced, the
more that will remain at delivery.

Industry has historically assumed that error crea-
tion was unavoidable. This assumption is no longer
valid. Errors can be largely avoided through a
“correctness by construction” development process.

“Correctness by construction” means that the
process must create software that, to the maximum
extent practical, is inherently caused and constrained
to be correct by the development processes used.
Without formality, this would be impossible. With

formality alone, it is unaffordable. Only by an inte-
grated lifecyle of formal and other (currently non-
formal) methods, tools and procedures can correct-
ness by construction be implemented in the industrial
setting.

Experience has shown that such a lifecycle need
be no more expensive than the typical lifecycle; in-
deed, it has provided productivity above industry
norms on industrial programs like the Lockheed
Martin C-130J [S].

The selection and synthesis of complementary
lifecycle methods will be examined shortly.

2.2 Verification-Driven Develop-
ment

In the ideal world, a software development proc-
ess which reliably prevents any errors from being
injected into its developed systems need not spend
anything on verification. Since no real-world process
will anain such perfection, some errors will continue
to be found in newly-developed software. Therefore,
verification will continue to be required even in a
“correctness by construction” lifecycle.

Unfortunately, the nature of verification is not
changed by the correctness approach. Verification
continues to the most expensive task in the software
lifecycle. Correctness by construction simply lessens
the number of correction/reverification cycles re-
quired (which is nevertheless a great productivity
booster).

Verification therefore becomes the other great
opporunity to reduce costs. Formality is a great en-
abler for such savings, by playing a role in the effi-
cient static analysis and testing of software. The life-
cycle is then optimized to enable efficient “end-
game” verification, while not ignoring other concerns
such as execution efficiency.

Verification is so seldom addressed as part of
lifecycle process planning, that a little attention early
on can have dramatic effects late in the project.
While the remainder of this paper will give process-
wide steps which implement this guideline, smaller
things can also make a great difference. For instance,
restricting the coding standards to make the produced
code compatible with the best formal and test tools is
very important.

15

3 Principles of Practicality

We will now explore some principles for integrating
formality into the industrial software lifecycle, and
thus economically implementing correctness by con-
struction and verification-driven development.

These principles are presented without any claims
either that they are exhaustive or that they “the only
way” to use formality practically. However, these
principles have been proven to enable the rather ex-
tensive use of formality in real industrial programs
while yielding some very commercially significant
benefits: greater software productivity than tradi-
tional, non-formal development (by approximately a
factor of two), and much higher resulting software
quality (by a factor of ten fewer anomalies, which
includes both errors and inconsistencies).

These principles will be illustrated by naming
methods which support them, as well as examples
from industry.

The principles we will discuss are:

Factorization of product and process

Change-driven design

Closed-loop formality

3.1 Factorization

The main principle for dealing with formality’s
scale-up limitations is factorization. Factorization is
defined here as the decomposition of both product
and process into small, relatively self-contained ele-
ments that are of an efficient scale for both individual
human effort, and for use with formal methods. Fac-
torization applies to both the product and process.

The primary method used for product factoriza-
tion is domain engineering. Domain analysis allows
factoring a large problem space into relatively small,
manageable and naturally interrelated collections of
requirements.

The SPC’s (Software Productivity Consortium)
CoRE (Consortium Requirements Engineering)
method combines formal requirements specification
with mechanisms for factoring the problem space as a
result of domain analysis [6]. Few formal require-
ments methods support factoring so directly.

CoRE has other advantages in a practical indus-
trial setting. Requirements are recorded essentially in

an algebraic format whose use is easily learned, and
whose representation is easily understood even by
non-users. CoRE shares this characteristic with the
NRL (Naval Research Laboratory) SCR (Software
Cost Reduction) method [7], and the T-VEC method
originated at Allied Signal.

Figure 1 shows an example CoRE requirement,
captured in the syntax of a Cadre Teamwork control
specification table.

The “abstracted output” is a discontinuous func-
tion of the “abstracted inputs” (actually, it is literally
a relation, though the distinction is not critical to the
purposes of this paper). Therefore the output must be
defined across all combinations of subranges of the
inputs. Each row in the table (besides the top label
row) defines the function across one combination of
subranges. All rows together fully define the output.
The breaks between rows represent the points of dis-
continuity, often called “boundaries” in the testing
arena.

Some other common formal requirements meth-
ods, such as Z and VDM, lack support for factoring
and general communicability. This makes their use in
the industrial setting more problematic. Other ame-
lioration strategies would need to be found to over-
come their weaknesses in these areas.

An architecture should be factored according to
the nature of the solution domain, and not, in general,
the problem domain (as frequently happens in object
orientation). Problem-domain factorization leads to
systems inefficient to develop and to execute.

Process factorization divides the analysis through
verification of a system into a sequence of steps.

Each step produces its own well-defined product ac-
cording to very strict rules of production, with the
assistance and rule enforcement of software tools
tailored for the purpose. Because the steps are small,
confirmatory Verification and Validation (V&V) can
be performed for each step in an economical manner.

In an overall software lifecycle, these rules of
production can not as yet always be completely for-
mal. This is due primarily to the current immaturity
of early-lifecycle formal methods. In all cases, how-
ever, the production rules should be specified as rig-
orously as is practical, primarily to preserve the
quality of products as they pass from phase to phase.

Additional factoring of the process can be ob-
tained through means such as a spiral lifecycle proc-
ess (as in the SPC’s ESP or Evolutionary Spiral Proc-
ess [8]).

A variation on this theme, that fits within a more
typical waterfall of “V” lifecycle, is narrow-slice
development. In narrow-slice development, during
each lifecycle phase an example of the products of
the next phase is developed using the planned proc-
ess (not via an ad-hoc "prototype" approach). The
narrow slice takes a "trial run" at the development
process, and works out its problems "before the herd
arrives” to do the main work of that phase. This ap-
proach detects many blind alleys or simple ineffi-
ciencies that may hidden in the process (especially in
an unfamiliar formal process) before much effort has
been expended, and thus improves the overall effi-
ciency and mitigates the risks of adopting formality.

abstracted abstracted abstracted S S abstracted
input #1 input #2 in_put #3 3 ; output
(17) (“i2") (13") .
ppeupatuuiaiupapuiut MO P Su doboooooooozoooooooooo
""""""""""""""""""""" S it St oo
"X ”X” subrange 3.1 3 E f1(i1, i2, B)
X" subrange 2.1 subrange 3.2 i § f2(i1,i2)
subrange 1.1 subrange 2.2 subrange 3.2 : 3(i3)
HEH .
subrange 1.2 subrange 2.2 subrange 3.2 I f4(i1,i3)

figure 1: Example CoRE Requirement

16

3.2 Change-Driven Design

Formal methods are exceptionally sensitive to
changes. A mathematical approach will often take
longer to perform than a traditional heuristic one, at
least in the initial definition activity and in activities
like theorem proving. These costs can be more than
recouped during the other lifecycle activities as long
as the costly activities need not be repeated too often.

However, in real industrial projects change is the
rule. It is typically frequent, and often extreme. The
only way to retain the advantages of formality with-
out being overwhelmed by its weaknesses in this area
is to strictly limit the propagation of change through
the system...so that when change occurs, it affects
only the absolute minimum portion of the system
inherently necessary to implement the change.

The propagation of change can be strictly limited
by constructing “change scenarios”...identifying
across the expected lifecycle of the product and its
variants every type of change that could plausibly
occur. This should include changes likely to occur as
part of the initial development cycle.

Then different architectural organizations can be
postulated to attempt to encapsulate those changes as
severely as possible. The goal is to achieve an archi-
tecture which will only need to be changed in one
place (ideally,"one subprogram or data structure) for
each individual “change stimulus.”

This approach is consistent with the philosophy
behind certain domain design approaches (e.g.,
SPC’s Synthesis approach [9]).

For instance, a class structure could be con-
structed to encapsulate changes likely to occur in a
system that must communicate significantly with
other devices, systems or its environment, e.g., via
data bus, and must transform such information to
perform its tasks (a fairly generic type of processing).

At the highest level of abstraction, most of what
such a system does could be covered by three classes
(this is the approach planned for portions of Boeing
North American’s development on the Brimstone
program, and which also was used on the Lockheed
Martin C-130J mission software).

One class could handle the translation of bus-
encoded data into more abstracted information suit-
able for use by the system being developed, and vice

17

versa, from abstracted system information into low-
level bus data.

Another class could provide read-only access to
the abstracted information which would represent the
state of the outside systems or environment.

The third class would perform the transformations
of abstracted information about current state of the
external environment, into abstracted information
about the desired effect upon the external environ-
ment. Note the similarity of this class’s charter and
the components of a CoRE table (i.e., abstracted in-
puts, abstracted outputs, and discontinuous functions
relating them). This similarity is exploited in a way
which will be described shortly.

The three classes work together to form a com-
plete processing engine. There would be a group of
three instances, one of each class, for each external
system to which the system under design was inter-
faced.

These three classes could be called “device inter-
face,” “device current state,” and “device control,”
respectively. This is illustrated in figure 2, in a vari-
ant of Buhr notation. Note that dashed outlines of
classes (outer box) or methods (inner boxes) indicate
there can be multiple instances thereof.

There are several plausible change scenarios for
this type of system. Most of them distill to two basic
patterns: The external systems or environmental in-
terfaces could change, or the purposes of the system
could change. In the first case, change will usually
be limited to the instance of the device interface class
for the system which changed. In the second case,
change will usually be limited to a single procedure
in the control class.

Another design criteria, with benefits not just as
change occurs but also for traceability and testing, is
to localize the implementation of each formal (e.g.,
CoRE) requirement to a single method in an object of
the control class. This takes advantage, noted earlier,
of the similarity between the nature of CoRE re-
quirements and the charter of the control class.

This approach is in contrast to the typical design
decomposition process, which “smears out™ individ-
ual requirements across many design artifacts. Expe-
rience has shown that this approach is valid even on
large programs (>100 KSLOC, e.g., like the C-130J):
appropriate domain-oriented factorization is the key
to making this possible.

—— e e e s e e s . e e e e o

| <dev_id>device_control

r— " abstracted
| <dev_id>device_interface | output
— <«
prepare_output_message _g [
| il

process_input_message ﬁ :

B | J
Tabstracted o
input (

—_—————— gy
|<dev_id>device_cumnt_shte
} [el abstracied_input ~

O |

figure 2: Change-Tolerant

In this type of design structuring, changes to a
single requirement affect, in general, just one sub-
program. Tests of a single requirement become unit-
level tests(using the rows of the CoRE table as the
specifications for individual test cases!). Traceability
of requirements to design to code to test cases be-
comes trivial. All these factors dramatically decrease
costs.

By creating a class structure which reflects the
inherent repeatabilities in the solution domain, one
can craft a “syntax” for design. Each type of class
becomes a “part of design,” just as nouns, verbs and
adjectives are “parts of speech.” As the English lan-
guage includes strict syntactic rules for how its parts
may interact with one other to express meaning, so
also a strict set of syntactic rules can be constructed
between the classes. In general, this approach is
called an ADL or “Architecture Design Language”
[10].

If the choice of the “parts of design™ for such a
syntax is directed by a domain design methodology,
the result will be both factored and change-driven.
Such an ADL can be called a DSDL or “Domain-
Specific Design Language.”

This is a “semi-formal™ method in the sense that
syntax is often considered a mathematical construc-
tion, and can be subjected to mathematical verifica-
tion arguments. Further, tools (homegrown or com-
mercial, e.g., Rational Apex subsystems and views)
can enforce the restrictions on interactions between
the classes, and thus prevent the introduction of many
types of errors.

18

Class Structure

Finally, identification of change-driven classes
allows one to create “implementation templates.”
These templates provide the final implementors (e.g.,
detailed designers/coders) with the required structure
of their portion of the system. The pre-defined allo-
cation of formal requirements to detailed-design ele-
ments makes implementation much simpler, verifica-
tion much quicker (against the pre-defined
allocation), and control of unwanted interactions
between code elements easier (the “universe” of
possibilities has been strictly limited by the tem-
plates).

3.3 Closed-Loop Formality

Formal requirements provide benefits even when
used in isolation. However, the added costs of using
formality make it imperative to obtain every possible
benefit of formal requirements. The remaining
benefits come only through using formality in an
integrated way throughout the lifecycle.

Formality throughout the lifecycle must apply the
strong mathematical foundation provided by the for-
mal requirements to facilitate every lifecycle activity:
design, code, static analysis, and testing. By eliminat-
ing much of the “guess work” typically in these ac-
tivities, lifecycle formality increases their efficiency.

The relationships between formal requirements
and formality in the rest of the lifecycle are illus-
trated in figure 3.

FORMAL
SOFTWARE
REQUIREMENTS K—

FORMAL
DYNAMIC
TESTING
2N
3 FORMAL STATIC
PROGRAM ANALYSIS

— FORMAL SOFTWARE
DEVELOPMENT K

figure 3: Formal Requirements and Lifecycle Formality

Formal development takes advantage of formal
requirements, the DSDL syntax and associated tem-
plates, and the previously-mentioned architectural
strategy of implementing each formal method in a
specific procedure in the software, to simplify and
speed implementation. If the software is then coded
in a formal language like the SPARK Ada subset
[11], the code will largely be correct as constructed.

Formal verification begins with static analysis.
With formal requirements and formal code, static
analysis of correctness is more efficient than tradi-
tional unit testing. Thus, static analysis is performed
first, any errors found are corrected, and the code is
then submitted to test This also “closes the loop” of
code back to requirements.

Formal testing remains necessary because of in-
complete formalization of the software product, the
need to verify target-compiler correctness, and hard-
ware issues (e.g., was the original software specifica-
tion based on a correct understanding of the hardware
environment).

Formal testing derives the test cases from the
formal requirements. This provides very high state-
ment and path coverage compared to typical non-
formal requirements-based testing. Since require-
ments-based testing is often the most efficient testing
approach, high confidence is provided at relatively
low testing cost.

19

If the CoRE (or SCR) method is used to specify
requirements, black-box testing is as simple as setting
up the abstracted input values in a given table row,
and comparing the result to the abstracted output for
that row. If the architecture has applied the heuristic
of “one requirement to one procedure,” white-box
testing of the most semantically-significant modules
in the software system will also be directly driven
from the formal requirements. This too has proven to
be highly efficient.

Conclusion

Formal methods are the future of software devel-
opment. The sheer number of failed software systems
is proof of the need for more robust means of pro-
duction. Failed systems are intolerable in business;
mathematics provides the needed robustness. Busi-
ness and mathematics are a marriage made in heaven;
they will meet again in software as they have so often
before in other disciplines.

Business will not, however, embrace mathematics
to its own loss. Mathematics has always provided net
benefits in other endeavors, and must do so now in
software, This requires that the software theorist at
least consider the business perspective; i.e., asking
“why are companies developing software?” The an-

swer almost invariably reduces to “for the sharehold-

»

€rs.

Re-examining formality’s role in such a purpose-
ful software lifecycle leads to principles of practical-
ity. As those principles are identified and refined,
formality will take an ever-increasing role in for-
profit software development. And this, in the end,
will benefit everyone; the industrialist, by improving
the bottom line, the consumers and public, by provid-
ing them with more reliable and affordable systems,
and the theorists, by providing more compelling rea-
sons, a sharper focus, and a ready outlet for their
creativity and research.

Biographical

James Sutton is the lead software methodologist
and software safety criticality engineer for Boeing
North American’s Brimstone missile system devel-
opment. He previously served as lead methodologist
and architect on the mission software for Lockheed
Martin’s C-130J program, as well as safety critical
methods liaison with US and international regulatory
agencies, reuse IRAD principal investigator, and re-
use lead engineer for the F-22. He has authored a
college textbook entitled "Power Programming" for
Prentice Hall, and has presented and/ or published for
numerous conferences including NAECON, Tri-Ada,
ERA Avionics Conference (U.K.), Ada-Europe,
IEEE DASC, and Compass (safety critical software).

References

[1] James M. Sutton. Lean Software for the Lean
Aircraft. Proceedings of the IEEE DASC 96 Confer-
ence, Atlanta, Georgia, 1996.

[2] Thomas A. Alspaugh, Stuart R. Faulk, Kath-
ryn Heninger Britton, R. Allan Parker, David L. Par-
nas, John E. Shore. Software Requirements for the A-
7E Aircraft. NRL/FR/5530-92-9194, Washington
DC: Naval Research Laboratory, 1992.

[3] Mark R. Blackburn, Robert D. Busser. T-
VEC: A Tool for Developing Critical Systems. Pro-
ceedings of the IEEE Compass 96 Conference, 1996.

[4] Steven P. Miller, Carl F. Hoech. Specifying
the Mode Logic of a Flight Guidance System in
CoRE. Unpublished working paper of Rockwell Avi-
onics and Communications, 1997.

20

[5] B. Carre', J. Sutton. Achieving High Integrity
At Low Cost: A Constructive Approach. Proceedings
of the ERA Conference, London, 1995.

[6] S. Faulk, L. Finneran, J. Kirby, Jr., J. Sutton.
Experience Applying the CoRE Method to the Lock-
heed C-130J Software Requirements. Proceedings of
the Ninth Annual Conference on Computer Assur-
ance, 1994.

[7] C. Heitmeyer, A. Bull, C. Gasarch, B. Labaw.
SCR*: A Toolset For Specifying And Analyzing Re-
quirements. Proceedings of Tenth Annual Conference
on Computer Assurance, 1995.

[8] Process Engineering with the Evolutionary
Spiral Process Model. SPC-93098-CMC version
01.00.06; Software Productivity Consortium; Hern-
don, VA, US January, 1994.

[9] Reuse-Driven Software Processes Guidebook.
SPC-92019-CMC version 02.00.03; Software Pro-
ductivity Consortium; Herndon, VA, US November
1993.

[10] M. Graham, E. Mettala. The Domain-
Specific Software Architecture Program. Proceed-
ings of the 1992 DARPA Software Technology Con-
ference, 1992.

[11] B. Carre', J. Garnsworthy. SPARK - An An-
notated Ada Subset for Safety-Critical Programming.
Proceedings of Tri-Ada Conference, Baltimore, De-
cember 1990.

Proving Properties of Accidents

C.W. Johnson,

Glasgow Accident Analysis Group,
Department of Computing Science,
University of Glasgow,

Glasgow, United Kingdom, G12 8QQ.
E-mail:johnson@dcs.glasgow.ac.uk
WWW: http://www.dcs.gla.ac.uk/~johnson

Abstract

Accident reports are produced by regulatory and
commercial authorities, such as the UK Air Accident
Investigation Branch [1] and the US National
Transportation Safety Board [17], in response to most
major accidents. They, typically, contain accounts of
the human and system failures that lead to major
accidents. These descriptions are then used to
identify the primary and secondary causes of the
failure. Finally, recommendations are made so that
the operators and regulators of safety-critical systems
can avoid future accidents. Unfortunately, it is often
difficult for readers to trace the way in which
particular conclusions are drawn from many hundreds
of pages of evidence. Natural language arguments
often contain implicit assumptions and ambiguous
remarks that prevent readers from understanding the
reasons why a particular conclusion was drawn from a
particular accident. This paper argues that
mathematical proof techniques can be used to support
the findings of accident investigations. These
techniques enable analysts to formally demonstrate
that a particular conclusion is justified given the
evidence in a report. Conclusion, Analysis and
Evidence diagrams can then be used to communicate
the results of a formal analysis. The intention is not
to replace the natural argumentation structures that are
currently used in accident reports. Rather, our aim is
to increase confidence that particular conclusions are
well supported by the evidence that is presented within
areport.

1 Introduction

Accident reports are intended to ensure that major
failures do not recur. They are produced by a wide
range of national [4, 6] and international bodies [23].
Typically, these documents begin by providing a brief
synopsis of the events leading to an accident. The
synopsis is then followed by a number of expert
analyses. These identify and prioritise the failures
leading to the accident. Finally, conclusions are
drafted from the experts' findings. These form the
basis of any actions that companies or regulatory
authorities might take to prevent future failures.

21

1.1 Conventional Reporting
Techniques

Unfortunately, it is not always easy for readers to
understand the justifications that support particular
conclusions [8]. Accident reports are often many
hundreds of pages in length. The evidence that
supports a particular line of analysis may be lost
amongst the paragraphs of contextual detail. A
further problem is that natural language can be
ambiguous. For example, accident reports often refer
to situations of ‘high workload' and 'operator error'
without explaining the precise meaning of these terms
[20]. Many accident reports are also inconsistent in
the sense that the same term is used to refer to several
different objects or people [14]. Later sections of this
paper will argue that these problems create
considerable confusion for the reader and may even
lead them to doubt the accuracy of the final report.

1.2 Formal Methods and
Accident Analysis

Formal proof techniques can be used to avoid the
ambiguity and inconsistency of natural language [2].
A number of authors have also used these techniques
to support the design of dynamic, interactive systems.
For example, Dix [S] has used an algebraic notation to
reason about high level properties of multi-user
systems. Paterno, Sciacchitano and Lowgren [19]
have used the LOTOS notation to examine interaction
with complex multimedia applications. Palanque and
Bastide [18] have applied Petri Nets to examine safety
and liveness properties of distributed systems. None
of this work has been applied to reason about accident
reports. In particular, there has been no attempt to use
mathematical techniques to prove that conclusions are
well-founded with respect to the analysis that is
presented in an accident report.

2 The Case Study

This paper focuses upon an accident report that was
produced by the United States' Coast Guard in

response to a collision between the passenger vessel
Noordam and the bulk carrier Mount Ymitos [22].
We are interested in this case study because it typifies
the many different operator errors and organisational
failures that exacerbate accidents with complex,
interactive systems. The remainder of this section
brief outlines the course of the accident. The
Noordam collided with the Mount Ymitos at 20.42
(Central Standard Time) on November 6th, 1993.
The accident occurred two miles south of the
Southwest Pass Entrance Light Buoy in the Gulf of
Mexico. The exact location was recorded as 28
degrees, 50.0 minutes North and 89 degrees, 25.7
minutes West. Both ships were damaged in the
collision but there was no loss of life.

The Mount Ymitos was outbound from the
Mississippi River en route to St Petersburg, Russia. It
had cleared the Southwest Pass out of the River when
the Third Officer noticed an inbound passenger vessel
using their binoculars. At this stage, he estimated that
the vessel was approximately six miles from the
Ymitos. He did not immediately report his
observation as the Captain was busy with the Pilot
who was preparing to leave the Mount Ymitos. The
watch-standers re-established visual contact when the
Noordam had closed to two miles from the Mount
Ymitos. The Captain reduced their speed to dead
slow and expected the Noordam to alter its heading.
At this point the ARPA (Automatic Radar Plotting
Aid) showed that the closest point of approach was
under six hundred feet. The Captain made several
attempts to alert the Noordam. At 20:40:08 the Coast
Guard logged a Channel 16 VHF call: 'Passenger
Vessel, Passenger Vessel, Go to South Pass'. At
20:40:50 they logged 'Passenger Vessel Going to
South Pass, I Tum Hard Starboard’. The third officer
then attempted to communicate the warning using an
Aldis lamp. No response was received.

The Noordam was en route to New Orleans from
Cozumel, Mexico. At approximately 20:00:00,
Second Officer Smit called the Pilot Station and
learned that two other vessels were also in-bound
towards the Mississippi and could be overtaken. The
Pilot did not alert the Noordam to the presence of any
outward bound vessels. Quartermaster Salyo was the
designated lookout He left the bridge on two separate
occasions during the approach. Shortly after 20:00:00
he left, with the permission of Second Officer Smit, to
make sandwiches and coffee for the bridge crew. At
20:10:00 he unlashed the anchors in preparation for
entering port. He returned at 20:20:00 but did not
detect the Mount Ymitos until immediately prior to
the collision. A scheduled watch change took place at
20:30:00. Second Officer Smit performed navigation
checks using the radar, together with Chief Officer
Broekhoven, before handing over to Third Officer
Veldhoen. Veldhoen, in turn, handed over to the
Chief Officer at 20:36:00 when an 'end of sea voyage'
was declared. This is a point of convenience
determined by the watch officer and represents the
point at which the Chief Officer assumes control for
the manoeuvring watch prior to arrival in port. In
order to complete this hand-over Veldhoen had to fix

22

the vessel's position, complete the log and notify the
engine room. As the Noordam changed course to
enter the final leg of the approach, Fourth Officer
Kuiper, who was on the bridge but who was not on
duty, saw the lights of the Mount Ymitos and
immediately issued a curse. The manoeuvre was
halted while the crew determined the course and
position of the vessel that they had seen,
Approximately one minute before the collision, Chief
Officer Broekhoven ordered left full rudder to pull
away from the danger.

The Coast Guard's report argues that the principle
reason for the collision was the failure by the
Noordam's crew to keep an adequate watch.
Unfortunately, the report does not provide a detailed
explanation of why this failure occurred. The reader is
left to infer the causal relations that link the
observations about the accident and the conclusions
that are listed at the end of the document. The
following pages, therefore, show how formal
techniques can be used to explicitly link the findings
of an investigation to the account of an accident.

3 Formalisation of the Accident

In order to reason about the findings of an accident
report, it is first necessary to model the events leading
to the failure. The first stage in this process is to
identify the critical operators, tasks, roles,
communications, systems and locations that helped to
shape the course of the accident.

3.1 Critical Components

A limitation with natural language approaches to
accident reporting is that it can be difficult to identify
critical information from a mass of background detail.
For example, the Coast Guard's report into the
Noordam collision includes the following account:

"Fourth Officer Daniel Kuiper, who was not on
duty, was the first to notice the lights of a vessel off
the starboard side of the Noordam. This was
between one and two minutes before the time of
collision. He saw a red light that he estimated was
approximately 2 points off the NOORDAM's
starboard bow - a point being 11.25 degrees of arc.
First Officer Kuiper uttered a curse word that
attracted the attention of others on the bridge. Third
Officer Veldhoen, upon looking to starboard, also
saw lights." [Paragraph 42]

Additional information, such as the conversion
between points and degree of arc, is included to help
the reader form a picture of the accident.
Unfortunately, such details may actually obscure the
underlying causes of operator 'error' and system
'failure'. Our previous work on accident analysis has,
however, identified a number of categories that can be
used to identify critical components in an accident:

- operators. It is necessary to represent the people
involved in an accident so that readers can follow
the way in which operator intervention affects the
course of system failures;

« roles. It is important to distinguish particular
individuals from the roles that they perform during
an accident. For example, a number of individuals
performed the tasks associated with the role of
watch-stander during the Noordam collision;

« tasks. It is necessary to identify the tasks that
operators were or should have been performing
during accidents if readers are to understand the
ways in which human intervention safeguarded the
system or exacerbated any key failures;

« speech acts. It is vital to represent
communication between the operators that are
involved in an accident. Misunderstandings have a
profound impact upon the safety of many
applications;

« information and control systems. This type of
information is included because the quality of
information that is available to system operators is
often determined by the channel that is used to
support their observations. For instance, ARPA
radar provides more detailed and arguably less
reliable information than direct visual contact;

« physical locations. It is necessary to represent
the place in which an accident occurs because the
location of a failure can have a profound impact
upon an operator's ability to respond to an accident

[11].

Paragraph [42], cited above, can be used to identify
physical locations, such as the Noordam and the
Mount Ymitos. It is also possible to identify
operators such as Veldhoen and Kuiper who perform
the roles of First and Fourth Officers respectively.
We can identify observation channels; in this case the
visual observation of the Ymitos' lights as well as
critical speech acts such as Kuiper's curse. Table 1
shows the results that can be obtained by extending
this analysis throughout the Coast Guard's report. In
formal terms, the elements of this table define the
types that model the Noordam accident. The process
of building such a table helps to strip out irrelevant
detail that obscures critical properties of major
accidents.

Physical Locations Roles
captain veniamis lookout
pacific trident chief officer
mount ymitos first officer

noordam third officer

fourth officer

watch officer

Operators

Speech Acts

ilot station

inbound pacific trident

engine room.

inbound capt veniamis

smit. outbound mount ymitos
salyo curse
broekhoven take bearing on lights
veldhoen lights moving right
kuiper officer change

end of voyage

left full rudder
Tasks Information Systems
navigation radar check | arpa radar
collision radar check visual
correlate radar targets binoculars

declare end ofvoyage

fix vessel position

complete log

notify engine room

23

Table 1: Critical Entity Table for the Noordam
Accident

3.2 Axioms for the Accident System

The identification of operators, roles, tasks, speech
acts, information systems and locations is of little
benefit if analysts cannot represent and reason about
the relationships that exist between these components.
The following section uses a simple form of temporal
logic to demonstrate how this might be done for the
Noordam case study.

3.2.1 Operators and Roles

The previous sections argued that it is important to
identify the critical roles that operators play in an
accident. This affects the range of tasks that operators
are expected to perform. For example, Broekhoven
was the Noordam's Chief Officer during the incident,
Smit was the First Officer:, Veldhoen was the Third
Officer and Salyo was the lookout

role(chief officer, broekhoven). (1)

role(first_officer, smit). 2)
role(third_officer, veldhoen). ?3)
role(lookout, salyo). ©)

Such clauses gather together information that is,
typically, scattered throughout conventional, natural
language documents. The roles performed by key
individuals in the Coast Guard's report are listed in
paragraphs [13, 16, 25, 30, 37, 42]. Such a
formalisation is also important if an individual's role
changes during the course of an accident. For
example, the officer in charge of the watch on the
Noordam changed at 20:30 hrs:

at(role(watch_officer, smit) , 2029). (S)
at(role(watch_officer, veldhoen) , 2030). (6)

The previous clauses exploit a simple form of
temporal logic in which the binary at operator takes a
proposition and a term denoting a time such that at(p,
t) is true if and only if p is true atz. A number of
technical problems surround the general application of
this simple extension to propositional logic. In
particular, the philosophical issue of reification forces
analysts to clearly state the relationship between
particular terms and objects over time. This
theoretical problem is less of an issue for our purposes
because we are always referring to definite entities at
specific times during an accident. We, therefore,
retain this simple temporal framework rather than the
more elaborate temporal languages in our previous
work [7, 10, 21].

3.2.2 Operators and Communications

Communications problems exacerbate many major
accidents. It is, therefore, important to represent and
reason about this source of 'error'. During the
accident, Smit requested and received specific
information about the Captain Veniamis and the
Pacific Trident that were inbound towards the
Mississippi:

3 t: at(message(pilot_station, smit,

inbound_capt_veniamis), t). @)
3 t: at(message(pilot_station, smit,
inbound_pacific_trident), t). ®)

The existential 3 quantifier (read as 'there exists') is
used because the accident report does not represent the
precise times associated with each of these individual
communications. The following clause shows how
the same approach can be adopted to represent a lack
of communication. Smit did not receive information
about outbound traffic from the Pilot Station:

V' t: not at(message(pilot_station, smit,

outbound_mount_ymitos), t).)
The universal V quantifier (read as ‘'for all') is used
because it was never the case that Smit received
information from the Pilot Station about the Mount
Ymitos. Similar clauses can be used to represent more
complex verbal exchanges. For example, Kuiper first
observed the Ymitos' lights and issued a curse which
was heard by Veldhoen and Broekhoven.
Broekhoven then requested that Veldhoen take a
bearing on the lights. Veldhoen responded that the
lights were moving right. The following clauses
represent these individual speech acts:

Jt,t': at(message(kuiper,
[veldhoen, broekhoven], curse), 2040)
A at(message(broekhoven,

24

veldhoen, take_bearing_on_lights), t)
A at(message(veldhoen,
broekhoven, lights_moving_right), t')
A after(2040, t) A after(t, t').
(10)

It is important to note that the preceding clauses do not
represent the precise verbal components of each
speech act. This information could be introduced if it
were available, for instance through studying cockpit
voice recordings. In the case of the Noordam there
was no such record. Place holders, such as curse, are
used to capture the recollected sense of the
communication without specifying its exact form.

3.2.3 Operators and Locations

It is important to consider the physical location of
system operators during major accidents. For
example, the lookout left his position on the bridge at
critical moments during the lead-up to the Noordam
collision. Clause (11) states that salyo was in the
galley at 20:00hrs. Similarly, clauses (12) and (13)
describe Salyo's subsequent movements from the
galley back to the bridge at 20:10 hrs and from the
bridge down to the decks at 20:15 hrs. They do not
specify when Salyo moved from each of these
locations because the report does not provide accurate
journey times:

at(position(salyo, galley(noordam)), 2000). (11)
at(position(salyo, bridge(noordam)), 2010). (12)
at(position(salyo, decks(noordam)), 2015). (13)

The previous clauses do not specify the relative
position of the galley, bridge or decks. Such
information can be introduced by formalising a three-
dimensional co-ordinate scheme [11]. This was not
done because clauses (11,12,13) reflect the level of
detail in the Coast Guard's report. This illustrates an
important benefit of the formalisation. Logic
provides an explicit representation of the level of
abstraction that is considered appropriate for the
readers of the report. They do not need to know the
relative positions of the galley, bridge and decks in
order to understand the events leading to the collision.
Such decisions are extremely important. Too much
detail and readers will be swamped amongst a mass of
contextual information. Too little detail and it will be
difficult for them to reconstruct the flow of events
leading to disaster. Clauses, suchas (11,12,13), can
be used to represent and reason about appropriate
levels of abstraction. This helps to avoid the ad hoc
decisions that frequently seem to be made about the
amount of location information that is included in
accident reports [14].

3.2.4 Operators and Tasks

The Coast Guard's report contains the following
paragraph:

"Between 2030 and 2036, Broekhoven and
Veldhoen checked the radars occasionally, using the
six mile scale. Broekhoven was planning the turn
from 325 degrees to 000 degrees to coincide with
bringing the Racon 'T' platform abeam, at 1.5 miles
to port. Both Veldhoen and Broekhoven used the
10-centimetre and centimetre radars to check the
distance of the domino platforms, and particularly
the bearing and range of the Racon 'T'. They were
not using the radars for collision avoidance and
observation of moving targets, and did not attempt
to correlate every fixed target contact in the radar
with fixed platforms observed visually to see if any
were any underway contacts rather than fixed
platforms." [Paragraph 39]

From this it is possible to extract two critical
observations about the operation of the Noordam.
Firstly, that between 20:30, and 20:36 both
Broekhoven and Veldhoen were performing
navigation radar checks. Secondly, that during this
interval they did not correlate radar targets with visual
observations. The following clauses introduce a
during operator such that during(p, t) is true if and
only if the situation denoted by p occurs at sometime
during the interval denoted by ¢. Formally, this can be
given as follows:

Yt : during(p t) &
3t : at(p, t') A before(t', end(t)) A
before(begin(t), t'). (149
This assumes that before(t, t') is true if ¢’ occurs at
some time after ¢ or at the same instant as z. The
following clauses also introduce the operator, in, such
that in(t, t', ") is true if ¢ is wholly contained within ¢’
and ¢”. This can be formalised in a similar manner to
during. In contrast, the following clauses formalise
the observations made in paragraph [39] of the
accident report:

3t : during(perform(broekhoven,
navigation_radar_check), t)
A not during(perform(broekhoven,
correlate_radar_targets), t)
A in(t, 2030, 2036). (15)
3t : during(perform(veldhoen,
navigation_radar_check), t)
A not during(perform(veldhoen,
correlate_radar_targets), t)
A inf(t, 2030, 2036). (16)
An important benefit of the formalisation process is
that clauses, such as (15) and (16), can be translated
back into natural language sentences; between 20:30
hrs and 20:36 hrs Broekhoven and Veldhoen
performed navigation radar checks but did not
correlate radar targets. The formalisation process
helps analysts to focus upon critical aspects of an
accident, such as operator tasks. This benefit might
be obtained using a conventional task analysis

25

technique such as TAKD [15]. Later sections will,
however, argue that formal reasoning techniques can
be used to prove properties of accident reports. This
provides the additional degree of assurance that is
demanded by bodies such as NASA and the UK
Ministry of Defence [2].

The previous example describes a relatively simple
set of observations about operator tasks. Typically,
the co-ordination of group activities is more complex.
For example, Veldhoen declared an 'end of sea voyage'
between 20:34 and 20:38. This procedure handed
over control of the watch to the First Officer
Broekhoven. He was responsible for navigating the
Noordam into port. This change was not, however,
announced to the lookout:

3t : during(perform(veldhoen,
declare_end_of voyage), t)
A not during(message(broekhoven, salyo,
officer_change), t)
A during(role(watch_officer, broekhoven), t)
Ain(t, 2034, 2038). an

The failure to inform the lookout was important
because the task of declaring the ‘end of sea voyage'
involves the watch officer in a number of sub-tasks
that reduce the amount of time that they have available
for navigation and collision avoidance:

V't: during(perform(veldhoen,
declare_end_of voyage), t)
¢ during(perform(veldhoen,
fix_vessel_position), t)
A during(perform(veldhoen, complete_log), t)
A during(message(veldhoen, engine_room,
end_of voyage), t). (18)

Such clauses illustrate how the products of
hierarchical task analysis might be introduced into
formal models of major accidents. The higher order
task of declaring the 'end of sea voyage' is comprised
of three sub-tasks: fixing the vessel's position;
completing the log and notifying the engine room.

3.2.5 Operators and Observations

The entities that were identified in Table 1 are generic
in the sense that operators, roles, tasks, speech acts,
information systems and physical locations are central
to all of the accidents reports that we have examined
[8, 9, 14]. This does not mean that the list is
exhaustive. A related point is that the significance of
individual entities will vary from accident to accident.
For example, automated control systems did not have
a significant impact upon the course of the collision
between the Ymitos and the Noordam. In contrast,
information systems played a critical role in the
observations that operators made during the accident.
Veldhoen made visual observations of the ship but did
not use an azimuth circle to verify his observation:

3t: at(observe(veldhoen,

mount_ymitos, visual), t). (19)
Vt: not at(observe(veldhoen,

mount_ymitos, azimuth), t). (20)

As before, the existential 3 quantifier is used in clause
(19) because the accident report does not identify the
particular interval when Veldhoen made his
observation. All we know is that there exists a time at
which Veldhoen made a visual observation of the
Ymitos. The universalV quantifier is used in clause
(20) because Veldhoen did not use an Azimuth circle
at any time in the accident. This shows how an
analysts concerns can direct the formalisation process.
Clause (20) represents something that the officer did
not do. If it had not been formalised then readers
would not have been aware of this omission. In fact,
Veldhoen's failure to verify his visual observations
reinforced Broekhoven's judgement that the ships
would pass starboard to starboard. He had seen a
green (starboard) light shortly after the initial
observation made by Kuiper:

3t : at(observe(broekhoven,
green_light(mount_ymitos), binoculars), t). (21)

It was only when Broekhoven saw a red light that he
realised the imminent possibility of a collision with
the Mount Ymitos and took evasive action:

at(observe(broekhoven,
red_light(mount_ymitos), visual), 2041)
A at(message(broekhoven,
engine_room, left_full_rudder), 2041).
(22)

This section has used temporal logic to formalise the
events leading to an accident. This formalisation
process helps to strip out the contextual detail that
hides critical observations in the many hundreds of
pages that form conventional reports. We have not,
however, shown that this approach can be used to
reason about the conclusions that are drawn from an
accident report.

4 Reasoning About
Accident Reports

This section argues that formal methods can be used to
establish the relationship between the evidence
presented in an accident report and the conclusions
which boards of enquiry use to draft future legislation.
Unless this can be done, it will be difficult for
commercial organisations to understand the reasons
why particular sanctions may be imposed in the
aftermath of major accidents [8]. For example, the
Coast Guard enquiry made the following observation
about the collision between the Noordam and the
Ymitos:

26

'The proximate cause of the casualty was the failure
of Chief Officer Broekhoven, the person in charge
of the watch on the NOORDAM at the time of the
casualty, to maintain a vigilant watch in that he did
not detect the presence of the MOUNT YMITOS
visually or on radar until the MOUNT YMITOS
was less than 1 mile away, less than 2 minutes
before the collision.' [Conclusion 1].

Such findings create a number of problems for
organisations that must prevent the recurrence of
future accidents. In particular, it does not explain the
reasons why Broekhoven failed to spot the Mount
Ymitos. Readers are left to piece together or infer
these justifications from the evidence presented in the
many previous pages of analysis. This can have
extremely serious consequences. Two readers might
easily infer two different reasons why Broekhoven
failed to keep an efficient watch. = Each might,
therefore, adopt quite different strategies for avoiding
future failures [20].

Formal proof techniques can be used to demonstrate
that a conclusion is valid given the evidence that is
presented in an accident report. For instance, the
following clause is derived from Conclusion 1 in the
Coast Guard report:

V't: not during(vigilant(broekhoven), t)
& not(during(observe(broekhoven,
mount_ymitos, visual), t)
v during(observe(broekhoven,
mount_ymitos, arpa_radar),t))
A before(t, 2040). (23)
We can re-write this clause as follows:

& not during(observe(broekhoven,
mount_ymitos, visual), t)
A not during(observe(broekhoven,
mount_ymitos, arpa_radar),t)
A before(t, 2040).
[DeMorgan's Law (23)] (24)
& (not during(observe(broekhoven,
mount_ymitos, visual), t) A before(t, 2040))
A (not during(observe(broekhoven,
mount_ymitos, arpa_radar), t) A before(t, 2040)).
[A Identity (24)] (25)

In order to justify Conclusion 1 we must consider two
different cases. The first concerns the reasons why
Broekhoven failed to make visual contact with the
Mount Ymitos. The second addresses the failure to
detect the Ymitos using the ARPA radar. In order to
establish the connection between the conclusion and
the evidence presented in the body of the report it is
necessary for analysts to explicitly state the reasons
supporting particular findings. For example, one of
the reasons why Broekhoven failed to observe the
Mount Ymitos was that he used the radar for
navigation and not for collision avoidance:

V t: not during(observe(broekhoven,
mount_ymitos, arpa_radar), t)
¢= during(perform(broekhoven,
navigation_radar_check), t)
A not during(perform(broekhoven,
correlate_radar_targets), t). (26)
We can now prove that the second part of our
formalisation of Conclusion 1 is satisfied by the
evidence in the accident report. This can be done by
applying the following inference rule to (15) and (26).

Ve P(t)=Q@), 3t:P(') = 3t:0(') 27)

Informally, this argument can be expressed as follows.
From clause (26), we conclude that Broekhoven failed
to observe the Mount Ymitos using the ARPA radar
during any interval in which he was performing a
navigation radar check and did not correlating radar
targets. From clause (15) we know that know that
Broekhoven was performing a navigation radar check
and was not correlating radar targets between 20:30
and 20:36. Clause (27) tells us that if, we have clause
(26) and clause (15) we can infer that Broekhoven
failed to observe the Mount Ymitos using the ARPA
radar during the interval between 20:30 and 20:36.

The previous proof illustrates a weakness in the
accident report. Our formalisation of Conclusion 1
stated that Broekhoven did not observe the Mount
Ymitos using the radar until 20:42. Our model has
been used to prove that Broekhoven was pre-occupied
with navigation checks between 20:30 and 20:36.
This leaves at least six minutes unaccounted for.
During that time, Broekhoven began turning the
Noordam to the North. The accident report makes no
reference to the use of the ARPA during this interval.
The reader has to assume that the system was not used
during this or subsequent operations prior to the
collision at 20:42. Such findings are significant
because they have important consequences for the
recommendations that might be drawn from the report.
For example, it is normal practice for officers to
correlate radar targets when approaching an unfamiliar
port. In the interval from 20:30 to 20:36 we can
clearly see that navigation problems explain why
Broekhoven did not perform these checks. We
cannot, however, explain the omission during the final
six minutes before the collision.

The second part of Conclusion 1 states that
Broekhoven did not make any visual observation of
the Mount Ymitos until 20:42. The justification for
this finding can be found in a subsequent conclusion,
rather than in the body of the accident report:

"The number of personnel (both watch-standing and
non-watch-standing) on the bridge of the
NOORDAM between 2020 and the time of the
collision may have raised the complacency level and
lowered the attentiveness of the bridge watch-
standers with regards to maintaining a dedicated
visual and radar watch.' [Conclusion 5].

27

The evidence for this conclusion can be found in
paragraph [41] which states that:

"There were seven other persons on the bridge of the
NOORDAM at this time (20:37hrs) in addition to
the chief officer, who was in control of the vessel -
three other licensed officers (one on duty, and two
off duty), one cadet, two quartermasters and the
chief officer's wife' [Paragraph 41].

This led to considerable confusion during our analysis
of the report. We initially identified eight, and not
seven, other individuals on the bridge in the final
minutes before the collision. This confusion arose
because Salyo was identified both by his name and by
his role as Quartermaster In order to form this
association, the reader must remember the allocation
of responsibilities that was introduced in paragraph
[25] when reading paragraph [41]:

V' t: not during(observe(broekhoven,
mount_ymitos, visual), t)

&= during(position(kuiper,
bridge(noordam)), t)

Aduring(position(veldhoen,
bridge(noordam)), t)

A during(position(helmsman,
bridge(noordam)), t)

A during(position(chief officers_wife,
bridge(noordam)), t)

A during(position(quartermaster_1,
bridge(noordam)), t)

A during(position(quartermaster_2,
bridge(noordam)), t)

A during(position(cadet,
bridge(noordam)), t)

A during(position(broekhoven,
bridge(noordam)), t). (28)

Paragraph [41] suggests that there were nine people on

the bridge at 20:37:

at(position(kuiper,

bridge(noordam)), 2037). (29)
at(position(veldhoen,

bridge(noordam)), 2037). (30)
at(position(helmsman,

bridge(noordam)), 2037). (31
at(position(chief officers_wife,

bridge(noordam)), 2037). (32)
at(position(quartermaster_I,

bridge(noordam)), 2037). (33)
at(position(quartermaster_2,

bridge(noordam)), 2037). (39
at(position(cadet,

bridge(noordam)), 2037). 35)
at(position(broekhoven,

bridge(noordam)), 2037). (36)

We can apply our definition of during, given in clause
(14), to re-write each of the clauses from (29) to (36)
in the following form:

3 t: during(position(kuiper, bridge(noordam)),t)
A before(2037, end(t)) A before(begin(t), 2037).
[Application of (14) to (29)] 37

By repeating the application of (14) in the manner
described above, we obtain the following:

3t : during(position(kuiper,
bridge(noordam)), t)

A during(position(veldhoen,
bridge(noordam)), t)

A during(position(helmsman,
bridge(noordamy)), t)

A during(position(chief officers_wife,
bridge(noordam)), t)

A during(position(quartermaster_1,
bridge(noordam)), t)

A during(position(quartermaster_2,
bridge(noordam)), t)

A during(position(cadet,
bridge(noordam)), t)

A during(position(broekhoven,
bridge(noordam)), t)

A before(2037, end(t))

A before(begin(t), 2037).

[Introduction of A
from application of (14) to (29..36)] (38)

Finally, by applying inference rule (27) we get the
following clause which corresponds to the second
condition in Conclusion 1. In other words, the
derivation of the following clause formally proves that
our conclusions are consistent with the information
contained in the body of the report:

3t : not during(observe(broekhoven,
mount_ymitos, visual), t)
A before(2037, end(t))
A before(begin(t), 2037).
[Application of (27) to (28) using (38)] (39)

This proof helps to identify a further problem with the
Coast Guard report We have previously cited
Conclusion 5 which states that the number of
personnel on the bridge between 20:20hrs and the time
of the collision may have lowered the attentiveness of
Broekhoven with regards to maintaining a visual and
radar watch. Our formal analysis reveals that the
evidence for this assertion only applies to the interval
from 20:37hrs until the time of the collision. This
poses a number of problems. We do not know why
Conclusion 5 mentions 20:20hrs rather than 20:37hrs
as stated in the body of the report. It can only be
speculated that a number of people arrived on the
bridge at this time earlier time. Alternatively, if
additional crew members gradually were arriving from
some time before 20:20hrs then we do not know why
this was chosen as the critical moment at which
collision avoidance tasks were impaired.

28

5 Communicating the Results of
Formalisation

Unfortunately, mathematical analysis provides non-
formalists with an extremely poor idea of the
argumentation processes that support particular
conclusions. It is difficult for people without some
mathematical background to understand the various
proof rules that are applied during the formal
derivation of particular conclusions. This section,
therefore, describes how literate specification
techniques can be extended from the field of software
engineering to support the formal analysis of accident
reports.

5.1 Literate Specification

Communicating the results of mathematical analysis is
a general problem for the application of formal
methods. It affects the techniques described in this
paper. It also affects the development of safety
-critical systems. For example, designers might use
the following clause to specify that a control system
automatically removes a warning at some time after a
failure has occurred. This is an important requirement
if users are not to be over-whelmed by obsolete error
messages. Unfortunately, it is not easy for non-
formalists to understand the natural language
requirement from its formal statement. A related
point is that the formal expression of the requirement
provides no clues as to the motivation or justification
behind the requirement. In other words, it describes
what the system should do, it does not describe why it
should do it:

V't, 3t': at(automatically_remove_warning(
blow_back_error), t')
¢ at(state(blow_back, failed), t)
A at(display(blow_back_error_icon), t)
A at(sys_cancel(blow_back_error_icon), t')
A before(t, t'). (40)

In previous papers, we have addressed these problems
by developing literate specification techniques [12,
13]. This approach uses the semi-formal
argumentation of design rationale to support the use of
formal methods during the systems development.
Figure 1 illustrates this approach. Rank Xerox's
Questions, Options and Criteria (QOC) notation is
used to document the reasons why the previous clause
might be adopted within the design of a particular
system. QOC diagrams are built by identifying the
key questions that must be addressed during the
development of an interactive system [3].

Q: How should the
blow back failure
warning be cancelled?

O: automatically,_remove_warning

C: automatic cancellation of
the warning reduces the
burdens on the operator

+

(blow_back_error)

.

“. C: the automatic cancellation
of the warning increases the
designers’ confidence that the
operator has observed
warning

Figure 1: Literate Specification for the Warning Cancellation.

A: Broekhoven failed to make a visual
observation of the Ymitos because

of the number of people on the bridge.

(Clause 28) [Conclusion 5]

C:Broekhoven failed to
maintain an adequate watch.
(Clause 25) [Conclusion 1]

\ A:Broekhoven didn't detect the Ymitos

using ARPA because radar was used for
navigation and not collision avoidance.
(Clause 26) [Paragraph 39]

E:there were seven other people
on the bridge at 20:37hrs
(Clause 38) [Paragraph 41]

E:Broekhoven and Valdhoen were

‘both preoccupied with navigation
tasks from 2030 to 2036hrs.

(Clause 15) [Paragraph 39]

Figure 2: Conclusion, Analysis, Evidence (CAE) Diagram for the Noordam Collision

29

The options that answer a particular question are
then linked to it using the lines shown in Figure 1.
Finally, options are linked to the criteria that
support them, using solid lines, or weaken them,
using broken lines. In Figure 1, the question of
how to cancel blow-back warnings is answered by
the design option that is specified by clause (40).
This is justified by the criteria that the automatic
cancellation of warnings reduces burdens on
system operators. This does not help the operator
to observe the warning.

The diagram shown in Figure 1 is relatively

simple in that it only shows a single option for the
design question. In practice, these diagrams tend
to show a number of alternative clauses each of
which represents a different design option for the
problem being considered. The interested reader is
directed to Johnson [13] for more detail on the
application of this approach.
This blend of formal and semi-formal notations can
also support the formal analysis of accident reports.
Natural language annotations of the Questions and
Criteria provide non-formalists with an entry-point
into the clauses that represent particular Options.
In literate specification, these annotations provide
the justifications for and against formal design
requirements. In accident analysis, they link
source material to the clauses that describe the
relationship between evidence and conclusions.

5.2 Conclusion, Analysis and Evidence
(CAE) Diagrams

The Questions, Options and Criteria notation can be
translated into a form that directly supports the formal
analysis of accident reports. Instead of using
questions to represent critical design issues, diagrams
can represent the conclusions that are presented in a
report. The options of a QOC diagram correspond to
alternative interpretations of the events leading to a
conclusion. Criteria can be compared to the evidence
that supports or weakens the interpretation of an
accident. Figure 2 presents a Conclusion, Analysis
and Evidence (CAE) diagram for the Noordam
collision. Broekhoven failed to maintain a vigilant
watch. This is supported by [Conclusion 1] in the
report and is formalised in clause (25). The
conclusion relies upon an analysis which suggests that
the number of people on the bridge prevented
Broekhoven from visually detecting the Mount
Ymitos. This is supported by the analysis in
[Conclusion 5] of the report and is formalised in
clause (28). The analysis rests upon evidence
presented in [Paragraph 41] of the report. The
conclusion also depends upon an analysis of the way

30

in which Broekhoven used the radar. In this analysis,
he was preoccupied with navigation rather than
collision avoidance, from [Paragraph 39] represented
in clause (26). This is supported by evidence in
[Paragraph 39].

There is an important difference between
Conclusion, Analysis and Evidence diagrams and the
Question, Options and Criteria notation. Options
represent alternative design choices in QOC. In
contrast, the analysis components of a CAE diagram
support a single conclusion. They are not mutually
exclusive. It should also be noted that the evidence
shown in Figure 2 supports the analysis. It is possible
to use dotted lines and '-' signs to indicate evidence
which might contradict a particular line of enquiry.

CAE diagrams are not intended to replace the
formal proof techniques that are used in their
construction. The vernacular labels that represent the
conclusions, analysis and evidence are open to the
same problems of inconsistency and mis-
interpretation that weaken the use of natural language
in accident reports. For instance, it is perfectly
possible to link a conclusion to a line of analysis that
has little or no relationship to the conclusion. The use
of formal proof techniques helps to ensure that this
does not happen. It should also be emphasised that
none of the techniques presented in this paper are
intended to replace the use of natural language in
accident report. Our use of discrete mathematics is
similar to that of forensic scientists who frequently use
continuous mathematical models, for instance of
combustion. Both sorts of model can be used to
represent and reason about the events leading to
failure.

The United Kingdom Engineering and Physical
Sciences Research Council has recently funded a three
year investigation into the integration of formal
reasoning and Conclusion, Analysis and Evidence
diagrams for accident reports. We are particularly
concerned to provide tool support for these
techniques. For example, Figure 3 illustrates how
CAE diagrams can be extended to represent the
clauses that are used within the proof of a conclusion.
This illustrates the mathematical relationship between
the underlying evidence, at the bottom of the diagram,
and the higher level conclusions. The task of
constructing and maintaining such diagrams for
complex accidents clearly requires some form of tool
support, especially when one realises that key
components of the proof, such as clause (27), are not
shown. This problem could be addressed by
exploiting hierarchical, graphical representations of
formal proofs, such as tableaux . Hypertext display
strategies might also be used to filter out th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>